Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:43:49.191Z Has data issue: false hasContentIssue false

SURVEY AND RELEASE OF PARASITOIDS (HYMENOPTERA) ATTACKING HOUSE AND STABLE FLIES (DIPTERA: MUSCIDAE) IN DAIRY OPERATIONS

Published online by Cambridge University Press:  31 May 2012

Tanja McKay
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Terry D. Galloway*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract

In 1995, Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae), a commercially available pupal parasitoid of the house fly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), was purchased to examine the status of wasps being sold to Manitoba producers. Percentage of pupae parasitized, numbers of parasitoids per pupa, total parasitoids, and parasitoid sex ratio were determined for each shipment of parasitoids received. To determine the extent to which these wasps could successfully parasitize house flies and stable flies, parasitoids were released weekly in four Manitoba dairy barns and levels of parasitism estimated. In 10 622 freeze-killed sentinel house fly pupae, 2.2% were parasitized throughout the season by N. vitripennis, and 5.8% were parasitized by eight other species of parasitoids. Of 11 897 naturally occurring house fly and stable fly pupae, 0.6% were parasitized by N. vitripennis, and 3.4% by eight other species of parasitoids. In four barns where there were no releases of N. vitripennis, 1.1% of 11 779 sentinel pupae were parasitized by four species of parasitoids and 3.8% of 8384 naturally occurring house fly and stable fly pupae were parasitized by nine species. The release of an estimated 3 648 093 N. vitripennis did not result in substantial parasitism in either sentinel pupae or naturally occurring pupae. In 1996, live sentinel house fly pupae (n = 50 842) and house fly and stable fly pupae occurring naturally (n = 4691) were collected in two of the nonrelease barns from the 1995 study to examine the activity of endemic parasitoids. Of the sentinel and naturally occurring pupae sampled, 4.0% and 9.4% were parasitized, respectively. Phygadeuon fumator Gravenhörst (Hymenoptera: Ichneumonidae) was the most abundant parasitoid, accounting for 97.4% and 79.9% of parasitoids collected from sentinel pupae and naturally occurring pupae, respectively. Other parasitoids included Urolepis rufipes (Ashmead), Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia subpunctata Först, Spalangia cameroni Perkins, Spalangia nigra Latreille, and a species of Trichomalopsis Crawford (Hymenoptera: Pteromalidae).

Résumé

En 1995, nous avons acheté des Nasonia vitripennis (Walker) (Hymenoptera : Pteromalidae), parasitoïdes vendus dans le commerce pour tuer les pupes de la Mouche domestique, Musca domestica L. et de la Mouche des étables, Stomoxys calcitrans (L.) (Diptera : Muscidae), dans le but d’examiner le statut des guêpes vendues aux producteurs manitobains. Le pourcentage de pupes parasitées, le nombre de parasitoïdes par pupe, le nombre total de parasitoïdes et le rapport mâles : femelles des parasitoïdes ont été déterminés pour chaque envoi de parasitoïdes reçu. Pour déterminer la capacité des guêpes de s’établir chez les mouches, nous avons libéré des parasitoïdes chaque semaine dans quatre fermes laitières et évalué les taux de parasitisme. Parmi 10 622 pupes expérimentales de la Mouche domestique tuées par congélation, 2,2% était parasitées pendant toute la saison par N. vitripennis, alors que 5,8% étaient parasitées par huit autres espèces de parasitoïdes. Parmi 11 897 pupes de mouches présentes naturellement, 0,6% étaient parasitées par N. vitripennis et 3,4% par huit autres espèces de parasitoïdes. Dans quatre granges où il n’y a pas eu libération de parasitoïdes, 1,1% de 11 779 pupes expérimentales ont été parasitées par quatre espèces de parasitoïdes et 3,8% de 8384 pupes de mouches des deux espèces présentes naturellement étaient parasitées par neuf espèces. La libération de 3 648 093 N. vitripennis (nombre estimé) n’a pas résulté en un parasitisme très important des pupes expérimentales ou des pupes présentes naturellement. En 1996, des pupes expérimentales vivantes de la Mouche domestique (n = 50 842) et des pupes présentes naturellement de la Mouche des étables et de la Mouche domestique (n = 4691) ont été recueillies dans deux fermes où il n’y a pas eu libération de parasites en 1995 et nous avons étudié l’activité des parasitoïdes endémiques. Parmi les pupes expérimentales, 4,0% étaient parasitées, alors que, parmi les pupes présentes naturellement, 9,4% étaient parasitées. Phygadeuon fumator Gravenhörst (Hymenoptera : Ichneumonidae) était le parasitoïde le plus abondant, responsable de 97,4% du parasitisme des pupes expérimentales et de 79,9% du parasitisme des pupes présentes naturellement. Parmi les autres parasitoïdes, il faut mentionner Urolepis rufipes (Ashmead), Muscidifurax raptor Girault et Sanders, Muscidifurax zaraptor Kogan et Legner, Spalangia subpunctata Först, Spalangia cameroni Perkins, Spalangia nigra Latreille, et une espèce de Trichomalopsis Crawford (Hymenoptera : Pteromalidae).

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andress, E.R., Campbell, J.B. 1994. Inundative releases of pteromalid parasitoids (Hymenoptera: Pteromalidae) for the control of stable flies, S. calcitrans (L.) (Diptera: Muscidae) at confined cattle installations in west central Nebraska. Journal of Economic Entomology 87: 714–22CrossRefGoogle Scholar
Axtell, R.C. 1986. Fly control in confined livestock and poultry production. Technical Monograph. Greensboro: CIBA-GEIGY CorporationGoogle Scholar
Beard, R.L. 1964. Parasites of muscoid flies. Bulletin of the World Health Organization 31: 491–3Google ScholarPubMed
Costello, R.A. 1984. Musca domestica L., house fly (Diptera: Muscidae). pp. 6364in Kelleher, J.S., Hulme, M.A. (Eds.), Biological Control Programmes Against Insects and Weeds in Canada 1969–1980. Slough: Commonwealth Agriculture BureauxGoogle Scholar
Depner, K.R. 1968. Hymenopterous parasites of the horn fly, Haematobia irritans (Diptera: Muscidae), in Alberta. The Canadian Entomologist 100: 1057–60CrossRefGoogle Scholar
Geden, C.J., Rutz, D.A., Scott, J.G., Long, S.J. 1992. Susceptibility of house flies (Diptera: Muscidae) and five pupal parasitoids (Hymenoptera: Pteromalidae) to abamectin and seven commercial insecticides. Journal of Economic Entomology 85: 435–40Google ScholarPubMed
Glofcheskie, B.D., Surgeoner, G.A. 1990. Muscovy ducks as an adjunct for the control of the house fly (Diptera: Muscidae). Journal of Economic Entomology 83: 788–91CrossRefGoogle ScholarPubMed
Lazarus, W.F., Rutz, D.A., Miller, R.W., Brown, D.A. 1989. Costs of existing and recommended manure management practices for house fly and stable fly (Diptera: Muscidae) control on dairy farms. Journal of Economic Entomology 82: 1145–51CrossRefGoogle ScholarPubMed
Legner, E.F. 1967. The status of Nasonia vitripennis as a natural parasite of the house fly, Musca domestica. The Canadian Entomologist 99: 308–9CrossRefGoogle Scholar
Legner, E.F., Olton, G.S. 1968. Activity of parasites from Diptera: Musca domestica, Stomoxys calcitrans, and species of Fannia, Muscina, and Ophyra. II. At sites in the Eastern Hemisphere and Pacific area. Annals of the Entomological Society of America 61: 1306–14CrossRefGoogle ScholarPubMed
Legner, E.F., Bay, E.C., White, E.B. 1967. Activity of parasites from Diptera: Musca domestica, Stomoxys calcitrans, Fannia canicularis, and F. femoralis, at sites in the Western Hemisphere. Annals of the Entomological Society of America 60: 462–8CrossRefGoogle Scholar
Lysyk, T.J. 1993 a. Adult resting and larval developmental sites of stable flies and house flies (Diptera: Muscidae) on dairies in Alberta. Journal of Economic Entomology 86: 1746–53CrossRefGoogle Scholar
Lysyk, T.J. 1993 b. Seasonal abundance of stable flies and house flies (Diptera: Muscidae) in dairies in Alberta, Canada. Journal of Medical Entomology 30: 888–95CrossRefGoogle ScholarPubMed
Lysyk, T.J. 1995. Parasitoids (Hymenoptera: Pteromalidae, Ichneumonidae) of filth fly (Diptera: Muscidae) pupae at dairies in Alberta. Journal of Economic Entomology 88: 659–65CrossRefGoogle Scholar
McKay, T. 1997. Parasitoid wasps (Hymenoptera: Pteromalidae, Ichneumonidae) for control of house flies and stable flies (Diptera: Muscidae) in dairy operations in Manitoba. M.Sc. thesis, University of Manitoba, WinnipegGoogle Scholar
Meyer, J.A., Shultz, T.A., Collar, C., Mullens, B.A. 1991. Relative abundance of stable fly and house fly (Diptera: Muscidae) pupal parasites (Hymenoptera: Pteromalidae; Coleoptera: Staphylinidae) on confinement dairies in California. Environmental Entomology 20: 915–21CrossRefGoogle Scholar
Morgan, P.B., Patterson, R.S. 1990. Efficiency of target formulations of pesticides plus augmentative releases of Spalangia endius Walker (Hymenoptera: Pteromalidae) to supress populations of Musca domestica L. (Diptera: Muscidae) at poultry installations in the southeastern United States. pp. 6978in Rutz, D.A., Patterson, R.S. (Eds.), Biocontrol of Arthropods Affecting Livestock and Poultry. Boulder: Westview PressGoogle Scholar
Morgan, P.B., Patterson, R.S., LaBrecque, G.C. 1976. Controlling house flies at a dairy installation by releasing a protelean parasitoid, Spalangia endius (Hymenoptera: Pteromalidae). Journal of the Georgia Entomological Society 11: 3943Google Scholar
Nagel, W.P., Pimentel, D. 1963. Some ecological attributes of a pteromalid parasite and its house fly host. The Canadian Entomologist 95: 208–13CrossRefGoogle Scholar
Olton, G.S., Legner, E.F. 1975. Winter inoculative release of parasitoids to reduce houseflies in poultry manure. Journal of Economic Entomology 68: 35–8CrossRefGoogle ScholarPubMed
Petersen, J.J., Meyer, J.A., Stage, D.A., Morgan, P.B. 1983. Evaluation of sequential releases of Spalangia endius (Hymenoptera: Pteromalidae) for control of house flies and stable flies (Diptera: Muscidae) associated with confined livestock in eastern Nebraska. Journal of Economic Entomology 76: 283–6CrossRefGoogle ScholarPubMed
Rivers, D.B., Denlinger, D.L. 1995. Fecundity and development of the ectoparasitic wasp Nasonia vitripennis are dependent on host quality. Entomologia Experimentalis et Applicata 76: 1524CrossRefGoogle Scholar
Rueda, L.M., Axtell, R.C. 1985. Guide to common species of pupal parasites (Hymenoptera: Pteromalidae) of the house fly and other muscoid flies associated with poultry and livestock manure. North Carolina Agricultural research Service Technical Bulletin 278Google Scholar
Rutz, D.A., Axtell, R.C. 1979. Sustained releases of Muscidifurax raptor (Hymenoptera: Pteromalidae) for house fly (Musca domestica) control in two types of caged-layer poultry houses. Environmental Entomology 8: 1105–10CrossRefGoogle Scholar
Rutz, D.A., Scoles, G.A. 1989. Occurrence and seasonal abundance of parasitoids attacking muscoid flies (Diptera: Muscidae) in caged-layer poultry facilities in New York. Environmental Entomology 18: 51–5CrossRefGoogle Scholar
Smith, L., Rutz, D.A. 1991 a. Microhabitat associations of hymenopterous parasitoids that attack house fly pupae at dairy farms in central New York. Environmental Entomology 20: 675–84CrossRefGoogle Scholar
Smith, L., Rutz, D.A. 1991 b. Seasonal and relative abundance of hymenopterous parasitoids attacking house fly pupae at dairy farms in central New York. Environmental Entomology 20: 661–8CrossRefGoogle Scholar
Stage, D.A., Petersen, J.J. 1981. Mass release of pupal parasites for control of stable flies and house flies in confined feedlots in Nebraska. pp. 52–8 in Patterson, R.S., Koehler, P.G., Morgan, P.B., Harris, R.L. (Eds.), Status of Biological Control of Filth Flies, Proceedings of a Workshop, 4–5 February 1981, Gainesville, Fla. U.S. Department of Agriculture, Science and Education Administration Publication A106 2:F64Google Scholar
Whiting, A.R. 1967. The biology of the parasitic wasp Mormoniella vitripennis [ = Nasonia brevicornis] (Walker). Quarterly Review of Biology 42: 333406CrossRefGoogle Scholar
Wylie, H.G. 1965. Effects of superparasitism on Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). The Canadian Entomologist 97: 326–31CrossRefGoogle Scholar
Wylie, H.G. 1966. Some mechanisms that affect the sex ratio of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae) reared from superparasitized housefly pupae. The Canadian Entomologist 98: 645–53CrossRefGoogle Scholar