Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T04:55:14.589Z Has data issue: false hasContentIssue false

Susceptibility of cranberry girdler to entomopathogenic nematodes

Published online by Cambridge University Press:  31 May 2012

Louis Simard
Affiliation:
Centre de Recherche en Horticulture, Département de phytologie, Université Laval, Sainte-Foy, Quebec, Canada G1K 7P4
Guy Bélair*
Affiliation:
Horticulture Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
Jacques Brodeur
Affiliation:
Centre de Recherche en Horticulture, Département de phytologie, Université Laval, Sainte-Foy, Quebec, Canada G1K 7P4
*
1 Corresponding author (e-mail: belairg@em.agr.ca).

Extract

The cranberry girdler, Chrysoteuchia topiaria (Zeller) (Lepidoptera: Pyralidae), is the most important sod webworm species attacking turfgrasses in Quebec, Canada (Simard 2001). Unlike other webworms, the cranberry girdler is rarely observed on grass blades but feeds on the crowns and roots in the thatch. Biopesticides based on a nematode–bacterium complex appear to hold promise as a means of controlling turfgrass insect pests, particularly those that colonize the thatch and the first few centimetres of soil (Potter 1998), such as the cranberry girdler (Georgis and Hague 1991). Our objective was to assess the susceptibility of the cranberry girdler to entomopathogenic nematodes. In the laboratory, we determined the LC50 values for four nematode species and evaluated the effect of contact time on host mortality.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–7CrossRefGoogle Scholar
Dutky, S.R., Thompson, J.V., Cantwell, G.E. 1964. A technique for the mass propagation of the DD-136 nematode. Journal of Insect Pathology 6: 417–22Google Scholar
Georgis, R., Hague, N.G.M. 1991. Nematodes as biological insecticides. Pesticide Outlook 2: 2932Google Scholar
Potter, D.A. 1998. Destructive turfgrass insects biology, diagnosis, and control. Chelsea, Michigan: Ann Arbor PressGoogle Scholar
SAS Institute Inc. 1989. SAS/STAT user's guide, version 6. Cary, North Carolina: SAS Institute IncGoogle Scholar
Simard, L. 2001. Contrôle biologique du hanneton européen (Rhizotrogus majalis) et de la pyrale de la canneberge (Chrysoteuchia topiaria) à l'aide de nématodes entomopathogènes. MSc thesis, Université Laval, QuebecGoogle Scholar
Tabashnick, B.E., Cushing, N.L. 1987. Quantitative genetic analysis of insecticide resistance: variation in fenvalerate tolerance in a diamondback moth (Lepidoptera: Plutellidae) population. Journal of Economic Entomology 82: 510CrossRefGoogle Scholar