Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T23:42:48.274Z Has data issue: false hasContentIssue false

SUSCEPTIBILITY OF THE BERTHA ARMYWORM, MAMESTRA CONFIGURATA (LEPIDOPTERA: NOCTUIDAE), TO COMMERCIAL FORMULATIONS OF BACILLUS THURMGIENSIS VAR. KURSTAKI1

Published online by Cambridge University Press:  31 May 2012

O.N. Morris
Affiliation:
Agriculture Canada Research Station, 195 Defoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Commercial Bacillus thuringiensis var. kurstaki (B.t.k.) (Dipel 132® and Thuricide 48 LV®) were bioassayed at 20 and 25°C against 3rd- (L3), 4th- (L4), 5th- (L5), and 6th- (L6) instar larvae of the bertha armyworm, Mamestra configurata Walker, on greenhouse-grown canola, Brassica napus L. cv. Westar. The L4 was the most susceptible stage to B.t.k. but it was much less susceptible than the spruce budworm, Choristoneura fumiferana (Clem.), a species against which this bacterium is currently used. The lethal time of B.t.k. to the larvae was inversely related to dosage applied. Younger instars (L3 to L4) were more sensitive to Dipel than older instars (L5 to L6) at 20°C but the reverse was true for Thuricide-treated larvae. All B.t.k. treatments reduced weight gain and frass deposition (by inference feeding activity) compared with untreated controls. The LC50 concentration of B.t.k. for larvae reduced survival to adult emergence by 87–100%.

Résumé

On a fait des essais d’efficacité de préparations commerciales de Bacillus thuringiensis var. kurstaki (B.t.k.) (Dipel 132® et Thuricide 48 LV®) à des températures de 20 et 25°C sur les troisième (L3), quatrième (L4), cinquième (L5) et sixième (L6) stades larvaires de la légionnaire bertha, Mamestra configurata Walker, élevés en serre sur du colza canola, Brassica napus L. cv. Westar. La L4 s’est révélée le stade le plus sensible au B.t.k., quoique sa sensibilité soit de loin inférieure à celle de la tordeuse du bourgeon de l’épinette, Choristoneura fumiferana (Clem.), contre laquelle la bactérie est couramment utilisée. Le temps létal de B.t.k. envers les larves était inversement relié à la dose employée. À 20°C les stades larvaires plus jeunes (L3 et L4) étaient plus sensibles au Dipel que les stades ultérieurs (L5 et L6), mais l’inverse s’observait pour le traitement au Thuricide. Tous les traitements au B.t.k. ont diminué le gain de poids et réduit les dépôts d’excréments et de sciure (donc l’activité alimentaire) par rapport aux témoins non traités. La concentration LC50 de B.t.k. a abaissé de 87–100% le taux de survie des larves jusqu’au stade adulte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, S., Sakakibara, H., and Nakamura, K.. 1976. Susceptibility of the pine caterpillar, Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae) to Bacillus thuringiensis. Kontyu, Tokyo 44: 217227.Google Scholar
Bracken, G.K., and Bucher, G.E.. 1984. Measuring the cost-benefit of control measures for Bertha armyworm (Lepidoptera: Noctuidae) infestations in rapeseed. Can. Ent. 116: 591595.CrossRefGoogle Scholar
Bucher, G.E., and Bracken, G.K.. 1976. The Bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Artificial diet and rearing technique. Can. Ent. 108: 13271338.CrossRefGoogle Scholar
Bucher, G.E., Lamb, R.J., and Bracken, G.K.. 1981. Temperature profiles in a rape field before and after harvest. Can. J. Soil Sci. 61: 145156.CrossRefGoogle Scholar
Burges, H.D., and Thompson, E.M.. 1971. Standardization and bioassay of microbial insecticides. pp. 591–622 in Burges, H.D., and Hussey, N.H. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York.Google Scholar
Dulmage, H.T., and Martinez, E.. 1973. The effects of continuous exposure to low concentrations of the delta endotoxin of Bacillus thuringiensis on the development of the tobacco budworm, Heliothis virescens. J. Invertebr. Pathol. 22: 1422.CrossRefGoogle Scholar
Fast, P.G. 1978. Laboratory bioassays of mixtures of Bacillus thuringiensis and chitinase. Can. Ent. 110: 201203.CrossRefGoogle Scholar
Fast, P.G., and Dimond, J.B.. 1984. Susceptibility of larval instars of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), to Bacillus thuringiensis. Can. Ent. 116: 131137.CrossRefGoogle Scholar
King, K.M. 1928. Barathra configurata wlk., an armyworm with important potentialities on the northern prairies. J. econ. Ent. 21: 279293.CrossRefGoogle Scholar
Lidstone, R.G., Goerzen, D.W., and Khachatourians, G.G.. 1985. A standard bioassay for larvicidal activity of Bacillus thuringiensis in sunflower moth Homeosoma electellum (Lepidoptera: Phycitidae). Can. Ent. 117: 1522.CrossRefGoogle Scholar
Luttrell, R.G., Young, S.Y., Yearian, W.C., and Horton, D.L.. 1982. Evaluation of Bacillus thuringiensis—spray adjuvant-viral insecticide combinations against Heliothis spp. (Lepidoptera: Noctuidae). Environ. Ent. 11: 783787.CrossRefGoogle Scholar
Morris, O.N. 1973. Dosage-mortality studies with commercial Bacillus thuringiensis sprayed in a modified Potter's tower against some forest insects. J. Invertebr. Pathol. 22: 108114.CrossRefGoogle Scholar
Smith, D.L., and Kolach, A.J. (compilers). 1985. Manitoba Insect Control Guide 1985. Manitoba Dept. of Agriculture.Google Scholar
Turnock, W.J., and Philip, H.G.. 1977. The outbreak of Bertha armyworm Mamestra configurata (Lepidoptera: Noctuidae), in Alberta, 1971–1975. The Manitoba Ent. 11: 1021.Google Scholar