Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T18:05:16.187Z Has data issue: false hasContentIssue false

Temperature modulation of photoperiodism: an adaptation for long-distance dispersal in the aphid, Acyrthosiphon pisum (Hemiptera: Aphididae)

Published online by Cambridge University Press:  25 January 2013

M.A.H. Smith
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
P.A. MacKay*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
R.J. Lamb
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1Corresponding author (e-mail: pa_mackay@umanitoba.ca).

Abstract

Variation in the seasonal occurrence of asexual and sexual phenotypes of Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) is quantified for a local population in southern Manitoba, Canada. To survive winter, summer asexual generations must produce a sexual generation in a timely way at the end of the season, so that females can lay overwintering eggs. This transition is controlled by day length, which varies in a fixed seasonal pattern with latitude, and the local pattern of day length selects for an appropriate photoperiodic response. Substantial variation in the timing of production of males and mating females occurs among locally collected genotypes. Some of the variation is due to the arrival of long-distance dispersers (1000 km or more), and some is consistent with shorter but still long-distance dispersal. Some of the variation is due to year-to-year changes in late summer temperature. The critical day length in nature, which corresponds to critical photoperiod, increases as the average temperature decreases. This temperature modulation is adaptive because it allows many genotypes to produce some sexual phenotypes before the end of the season, although their photoperiodic responses are characteristic of long-distance dispersers and inappropriate to local day lengths.

Résumé

Nous avons mesuré la variation dans l'occurrence saisonnière des phénotypes asexués et sexués dans une population locale d’Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) dans le sud du Manitoba, Canada. Afin de survivre à l'hiver, les générations asexuées de l’été doivent produire une génération sexuée à un moment approprié à la fin de la saison de manière à ce que les femelles pondent des œufs qui survivent à l'hiver. Cette transition est contrôlée par la photopériode qui varie selon un patron saisonnier fixe en fonction de la latitude; le patron local de durée de l’éclairement journalier entraîne la sélection d'une réponse photopériodique appropriée. Il existe parmi les génotypes récoltés localement une importante variation dans le calendrier de production des mâles et d'accouplement des femelles. Une partie de la variation est due à l'arrivée de pucerons qui se sont dispersés sur une grande distance (1000 km ou plus), alors qu'une autre partie est compatible avec une dispersion plus restreinte, mais quand même de longue distance. La variation est aussi en partie due aux changements interannuels de température à la fin de l’été. La durée critique de l’éclairement en nature, qui correspond à la photopériode critique, augmente à mesure que la température moyenne décroît. Cette modulation par la température est adaptative car elle permet à plusieurs des génotypes de produire des phénotypes sexués avant la fin de la saison, bien que leurs réponses photopériodiques soient celles de pucerons qui se dispersent sur de grandes distances et soient inappropriées en regard des durées locales d’éclairement.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, A.B.M., Tatchell, G.M., Harrington, R., Bale, J.S. 1996. Adaptive significance of changes in morph production during the transition from parthenogenetic to sexual reproduction in the aphid Rhopalosiphum padi (Homoptera: Aphididae). Bulletin of Entomological Research, 86: 9399.CrossRefGoogle Scholar
Blackman, R.L. 1971. Variation in the photoperiodic response within natural populations of Myzus persicae Sulz. Bulletin of Entomological Research, 60: 533546.CrossRefGoogle ScholarPubMed
Blackman, R.L. 1974. Aphids. Ginn & Company Limited, London, United Kingdom.Google Scholar
Butts, R.A. 1992. Cold hardiness and it relationship to overwintering of the Russian wheat aphid (Homoptera: Aphididae) in southern Alberta. Journal of Economic Entomology, 85: 11401145.CrossRefGoogle Scholar
Dedryver, C.A., Le Gallic, J.F., Gauthier, J.P., Simon, J.C. 1998. Life cycle of the cereal aphid Sitiobion avenae F.: polymorphism and comparison of life history traits associated with sexuality. Ecological Entomology, 23: 123132.CrossRefGoogle Scholar
Erlykova, N. 2003. Inter- and intraclonal variability in the photoperiodic response and fecundity in the pea aphid Acyrthosiphum pisum (Hemiptera: Aphididae). European Journal of Entomology, 100: 3137.CrossRefGoogle Scholar
Halkett, F., Harrington, R., Hullé, M., Kindlmann, P., Menu, F., Rispe, C., et al. 2004. Dynamics of production of sexual forms in aphids: theoretical and experimental evidence for adaptive “coin-flipping” plasticity. The American Naturalist, 163: 112125.CrossRefGoogle ScholarPubMed
Hardie, J. 2010. Photoperiodism in insects: aphid polyphenism. In Photoperiodism: the biological calendar. Edited by R.J. Nelson, D.L. Denlinger and D.E. Somers. Oxford University Press, United Kingdom. pp. 342363.Google Scholar
Hullé, M., Maurice, D., Rispe, C., Simon, J.C. 1999. Clonal variability in sequences of morph production during the transition from parthenogenetic to sexual reproduction in the aphid Rhopalosiphum padi (Sternorrhyncha: Aphididae). European Journal of Entomology, 96: 125134.Google Scholar
Kenten, J. 1955. The effect of photoperiod and temperature on reproduction in Acyrthosiphon pisum (Harris) and on the forms produced. Bulletin of Entomological Research, 46: 599624.CrossRefGoogle Scholar
Lamb, R.J.MacKay, P.A. 1997. Photoperiodism and life cycle plasticity of an aphid, Macrosiphum euphorbiae (Thomas), from central North America. The Canadian Entomologist, 129: 10351048.CrossRefGoogle Scholar
Lamb, R.J.Pointing, P.J. 1972. Sexual morph determination in the aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 18: 20292042.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., MacKay, P.A. 1997. Photoperiodism and seasonal abundance of an aphid, Macrosiphum euphorbiae (Thomas), in oilseed flax. The Canadian Entomologist, 129: 10491058.CrossRefGoogle Scholar
Leather, S.R. 1993. Overwintering in six arable aphid pests: a review with particular relevance to pest management. Journal of Applied Entomology, 116: 217233.CrossRefGoogle Scholar
Lees, A.D. 1966. The control of polymorphism in aphids. Advances in Insect Physiology, 3: 207277.CrossRefGoogle Scholar
Lees, A.D. 1989. The photoperiodic responses and phenology of an English strain of the pea aphid Acyrthosiphon pisum. Ecological Entomology, 14: 6978.CrossRefGoogle Scholar
Lushai, G., Hardie, J., Harrington, R. 1996. Inheritance of photoperiodic response in the bird cherry aphid, Rhopalosiphum padi. Physiological Entomology, 21: 297303.CrossRefGoogle Scholar
MacGillivray, M.E.Anderson, G.B. 1964. The effect of photoperiod and temperature on the production of gamic and agamic forms in Macrosiphum euphorbiae (Thomas). Canadian Jounal of Zoology, 42: 491510.CrossRefGoogle Scholar
MacKay, P.A. 1987. Production of sexual and asexual morphs and changes in reproductive sequence associated with photoperiod in the pea aphid, Acyrthosiphon pisum (Harris). Canadian Journal of Zoology, 65: 26022606.CrossRefGoogle Scholar
MacKay, P.A. 1989. Clonal variation in sexual morph production in Acyrthosiphon pisum (Homoptera: Aphididae). Environmental Entomology, 18: 558562.CrossRefGoogle Scholar
MacKay, P.A., Lamb, R.J., Hughes, M.A. 1989. Sexual and fundatrix-like morphs in asexual Australian populations of the pea aphid (Homoptera: Aphididae). Environmental Entomology, 18: 111117.CrossRefGoogle Scholar
MacKay, P.A., Reeleder, D.J., Lamb, R.J. 1983. Sexual morph production by apterous and alate viviparous Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Canadian Journal of Zoology, 61: 952957.CrossRefGoogle Scholar
Reeleder, D.J. 1978. Aspects of the photoperiod response of the pea aphid Acyrthosiphon pisum (Harris). M. Sc. thesis. University of Windsor, Windsor, Canada.Google Scholar
Sharma, M.L., Larrivée, J.M., Thériault, L.M. 1973. Effets de la photopériode et des temperatures moyennes de 15 °C sur la fécondité et la production des sexuées chez le puceron du pois, Acyrthosiphon pisum (Aphididae: Homoptera). The Canadian Entomologist, 105: 947956.CrossRefGoogle Scholar
Sharma, M.L., Larrivée, J.M., Thériault, L.M. 1974. Production des formes sexuées chez Acyrthosiphon pisum (Aphididae: Homoptera), sur les pois de variété Lincoln dans les conditions expérimentales de l'extérieur. The Canadian Entomologist, 106: 307313.CrossRefGoogle Scholar
Smith, M.A.H. 1987. A study of photoperiodic responses and long-distance movements of populations of pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Ph.D. thesis. University of Manitoba, Winnipeg, Manitoba, Canada.Google Scholar
Smith, M.A.H.MacKay, P.A. 1989. Seasonal variation in the photoperiodic responses of a pea aphid population: evidence for long-distance movements between populations. Oecologia, 81: 160165.CrossRefGoogle ScholarPubMed
Smith, M.A.H.MacKay, P.A. 1990. Latitudinal variation in the photoperiodic responses of populations of pea aphid (Homoptera: Aphididae). Environmental Entomology, 19: 618624.CrossRefGoogle Scholar
Smith, M.A.H., MacKay, P.A., Lamb, R.J. 2011. Temperature modulation of photoperiodism and the timing of late-season changes in life history for an aphid, Acyrthosiphon pisum. The Canadian Entomologist, 143: 5671.CrossRefGoogle Scholar
SYSTAT Software Inc. 2009. SYSYAT 13, Statistics I. SYSTAT Software Inc., Chicago, United States of America.Google Scholar
Vaz Nunes, M.Hardie, J. 1996. Differential photoperiodic responses in genetically identical winged and wingless pea aphids, Acyrthosiphon pisum, and the effect of day length on wing development. Physiological Entomology, 21: 339343.CrossRefGoogle Scholar
Ward, S.A., Leather, S.R., Dixon, A.F.G. 1984. Temperature prediction and the timing of sex in aphids. Oecologia, 62: 230233.CrossRefGoogle ScholarPubMed