Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T20:56:42.705Z Has data issue: false hasContentIssue false

TEMPERATURE-DEPENDENT DEVELOPMENT OF THE MOUNTAIN PINE BEETLE (COLEOPTERA: SCOLYTIDAE) AND SIMULATION OF ITS PHENOLOGY

Published online by Cambridge University Press:  31 May 2012

Barbara J. Bentz
Affiliation:
Intermountain Research Station, Forest Service, U.S. Department of Agriculture, Ogden, Utah, USA 84401
Jesse A. Logan
Affiliation:
Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA 24061
Gene D. Amman
Affiliation:
Intermountain Research Station, Forest Service, U.S. Department of Agriculture, Ogden, Utah, USA 84401

Abstract

Temperature-dependent development of the egg, larval, and pupal life-stages of the mountain pine beetle (Dendroctonus ponderosae Hopkins) was described using data from constant-temperature laboratory experiments. A phenology model describing the effect of temperature on the temporal distribution of the life-stages was developed using these data. Phloem temperatures recorded in a beetle-infested lodgepole pine (Pinus contorta Douglas) were used as input to run the model. Results from model simulations suggest that inherent temperature thresholds in each life-stage help to synchronize population dynamics with seasonal climatic changes. This basic phenological information and the developed model will facilitate both research and management endeavors aimed at reducing losses in lodgepole pine stands caused by mountain pine beetle infestations.

Résumé

On trouvera ici la description du développement de l’oeuf, de la larve et de la nymphe sous l’influence de la température chez le Dendroctone du Pin ponderosa (Dendroctonus ponderosae Hopkins), description élaborée à la suite d’observations en laboratoire dans des conditions constantes de température. Les données ont également servi à construire un modèle de la phénologie de l’insecte qui tient compte de l’effet de la température sur la répartition temporelle des divers stades. Les températures du phloème enregistrées dans un Pin ponderosa infesté de coléoptères ont été intégrées au modèle. Les résultats des simulations indiquent que les seuils thermiques inhérents à chacun des stades contribuent à synchroniser la dynamique de la population avec les changements climatiques saisonniers. Cette information phénologique de base et le modèle que nous avons mis au point faciliteront les tentatives de recherche et d’aménagement entreprises dans le but de limiter, dans les forêts de Pins ponderosa, les pertes occasionnées par les infestations de dendroctones.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1973. Population changes of the mountain pine beetle in relation to elevation. Environ. Ent. 2(4): 541547.CrossRefGoogle Scholar
Amman, G.D., and Cole, W.E.. 1983. Mountain pine beetle dynamics in lodgepole pine forests. Part II: Population dynamics. USDA For. Serv. Gen. Tech. Rep. INT-145.Google Scholar
Bartos, D.L., and Amman, G.D.. 1989. Microclimate: An alternative to tree vigor as a basis for mountain pine beetle infestations. USDA For. Serv. Res. Pap. INT-400.Google Scholar
Beal, J.A. 1934. Relation of air and bark temperatures of infested ponderosae pines during subzero weather. J. econ. Ent. 27: 11321139.CrossRefGoogle Scholar
Bedard, W.D. 1940. The relation of lipid and moisture content to cold-hardiness of mountain pine beetle larvae. Unpubl. Rep., USDA For. Serv.Google Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. Bioscience 22(10): 598602.CrossRefGoogle Scholar
Cole, W.E. 1981. Some risks and causes of mortality in mountain pine beetle populations: A long-term analysis. Res. Popul. Ecol. 23(1): 116144.CrossRefGoogle Scholar
Kramer, D.A., Stinner, R.E., and Hain, F.P.. 1991. Time versus rate in parameter estimation of nonlinear temperature-dependent development models. Environ. Ent. 20: 484488.CrossRefGoogle Scholar
Kvalseth, T.O. 1985. Cautionary note about R 2. Am. Statistician 39: 279285.Google Scholar
Langor, D.W. 1989. Host effects on the phenology, development, and mortality of field populations of the mountain pine beetle. Can. Ent. 121: 149157.CrossRefGoogle Scholar
Logan, J.A. 1988. Toward an expert system for development of pest simulation models. Environ. Ent. 17(2): 359376.CrossRefGoogle Scholar
Logan, J.A., and Amman, G.D.. 1986. A distribution model for egg development in mountain pine beetle. Can. Ent. 118: 361372.CrossRefGoogle Scholar
Logan, J.A., Stinner, R.E., Rabb, R.L., and Bacheler, J.S.. 1979. A descriptive model for predicting spring emergence of Heliothis zea populations in North Carolina. Environ. Ent. 8: 141146.CrossRefGoogle Scholar
Logan, J.A., Wolkind, D.J., Hoyt, S.C., and Tanigoshi, L.K.. 1976. An analytical model for description of temperature dependent rate phenomenon in arthropods. Environ. Ent. 5: 11331140.CrossRefGoogle Scholar
McCambridge, W.F. 1974. Influence of low temperatures on attack, oviposition, and larval development of mountain pine beetle Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Ent. 106: 979984.CrossRefGoogle Scholar
Powell, J.M. 1967. A study of habitat temperatures of the bark beetle Dendroctonus ponderosae in lodgepole pine. Agric. Meteor. 4: 189201.CrossRefGoogle Scholar
Régniere, J. 1984. A method of describing and using the variability in development rates for the simulation of insect phenology. Can. Ent. 116: 13671376.CrossRefGoogle Scholar
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae, in the east Kootenay region of British Columbia. I. Life cycle, brood development, and flight periods. Can. Ent. 94: 531538.CrossRefGoogle Scholar
Reid, R.W. 1963. Biology of the mountain pine beetle, Dendroctonus monticolae, in the east Kootenay region of British Columbia. III. Interactions between the beetle and its host, with emphasis on brood mortality and survival. Can. Ent. 95: 225238.CrossRefGoogle Scholar
Reid, R.W., and Gates, H.. 1970. Effect of temperature and resin on hatch of eggs of the mountain pine beetle (Dendroctonus ponderosae). Can. Ent. 102: 617622.CrossRefGoogle Scholar
Safranyik, L., and Whitney, H.S.. 1985. Development and survival of axenically reared mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), at constant temperatures. Can. Ent. 117: 185192.CrossRefGoogle Scholar
Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., and Cole, C.L.. 1977. Distribution model of organisms development times. J. Theor. Biol. 66: 2128.CrossRefGoogle ScholarPubMed
Stinner, R.E., Butler, G.D., Bacheler, J.S., and Tuttle, C.. 1975. Simulation of temperature dependent development in population dynamic models. Can. Ent. 107: 11671174.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984. Modeling distributions of insect development time: A literature review and application of the Weibull Function. Ann. ent. Soc. Am. 77: 475483.CrossRefGoogle Scholar
Whitney, H.S., and Spanier, O.J.. 1982. An improved method for rearing axenic mountain pine beetles. Can. Ent. 114: 10951100.CrossRefGoogle Scholar
Wygant, N.D. 1942. Effects of low temperatures on the Black Hills beetle (Dendroctonus ponderosae). Unpubl. Rep., USDA For. Serv. Rocky Mountain Forest and Range Exp. Sta. 65 pp.Google Scholar
Yuill, J.S. 1941. Cold hardiness of two species of bark beetle in California forests. J. econ. Ent. 34: 702709.CrossRefGoogle Scholar