Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T17:48:53.521Z Has data issue: false hasContentIssue false

A TEMPERATURE-DEPENDENT MODEL OF REEMERGENCE OF IPS CALLIGRAPHUS (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

Terence L. Wagner
Affiliation:
Department of Entomology, Texas A&M University, College Station, Texas, USA 77843
Richard O. Flamm
Affiliation:
Department of Entomology, Texas A&M University, College Station, Texas, USA 77843
Robert N. Coulson
Affiliation:
Department of Entomology, Texas A&M University, College Station, Texas, USA 77843

Abstract

Reemergence of Ips calligraphus (Germar) was studied at nine constant temperatures from 10 to 37.5°C. The relationship of adult residence time to temperature formed a backward "J"-shaped curve. Median residence times ranged from 6.25 days at 30°C to 163.5 days at 10°C. The distributions of residence times changed with temperature and were nearly uniform at the low temperatures, peaked and skewed to the right at the intermediate temperatures, and nearly symmetric at the high temperatures. Greater than 93% of all adults reemerged at temperatures from 12.5 to 35°C but only 56% reemerged at 37.5°C. Female residence time was about 26% longer than the male. A mathematical function of reemergence rates versus constant temperatures and a distribution function of normalized reemergence times predicted percentage reemergence of a population through time. In simulations, a multiple-cohort procedure was applied using frequency distributions of field attacks to identify the starting times of the model. Model predictions compared favorably with reemergence from three trees in each of four field plots.

Résumé

On a étudié la réémergence de l’Ips calligraphus (Germar) à neuf températures constantes variant de 10 à 37,5°C. La relation entre le temps de résidence des adultes et la température décrit une courbe en "J" inversé. La médiane des temps de résidence a varié de 6,25 jours à 30°C, jusqu’à 163,5 jours à 10°C. Les distributions des temps de résidence ont changé avec la température : presqu’uniformes à basse température, elles étaient concentrées et biaisées à droite aux températures moyennes, et presque symétriques aux températures élevées. Plus de 93% des adultes sont réémergés aux températures de 12,5 à 35°C, mais seulement 56% sont ressortis à 37,5°C. Le temps de résidence des femelles était d’environ 26% plus long que celui des mâles. Une fonction mathématique décrivant le taux de réémergence par rapport à la température constante, et une fonction de distribution décrivant les temps de réémergence normalisés ont permis de modéliser l’évolution du pourcentage de réémergence d’une population dans le temps. Lors des simulations, on a appliqué une méthode reposant sur des cohortes multiples dont les temps de départ étaient fixés à partir des distributions de fréquence des attaques telles qu’observées sur le terrain. Les prévisions du modèle se comparaient favorablement aux observations de la réémergence dans quatre parcelles d’étude sur le terrain.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

All, J.N., and Anderson, R.F.. 1972. Initial attack and brood production by females of Ips grandicollis (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 65: 12931296.CrossRefGoogle Scholar
Annila, E. 1969. Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera: Scolytidae). Ann. Zool. Fenn. 6: 161208.Google Scholar
Cameron, E.A., and Borden, J.H.. 1967. Emergence pattern of Ips confusus (Coleoptera: Scolytidae) from ponderosa pine. Can. Ent. 99: 236244.CrossRefGoogle Scholar
Cook, S.P., Wagner, T.L., Flamm, R.O., Dickens, J.C., and Coulson, R.N.. 1983. Examination of sex ratios and mating habits of Ips avulsus and I, calligraphus (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 76: 5660.CrossRefGoogle Scholar
Coulson, R.N., Fargo, W.S., Pulley, P.E., Foltz, J.L., Pope, D.N., Richerson, J.V., and Payne, T.L.. 1978. Evaluation of the reemergence process of parent adult Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 110: 475486.CrossRefGoogle Scholar
Coulson, R.N., Fargo, W.S., Pulley, P.E., Pope, D.N., Foltz, J.L., and Bunting, A.M.. 1979. Spatial and temporal patterns of emergence for within-tree populations of Dendroctonus frontalis (Coleoptera: Scolytidae). Can. Ent. 111: 273287.CrossRefGoogle Scholar
Curry, G.L., Feldman, R.M., and Sharpe, P.J.H.. 1978 a. Foundations of stochastic development. J. Theor. Biol. 74: 397410.CrossRefGoogle ScholarPubMed
Curry, G.L., Feldman, R.M., and Smith, K.C.. 1978 b. A stochastic model of a temperature-dependent population. J. Theor. Pop. Biol. 13: 197213.CrossRefGoogle ScholarPubMed
Fargo, W.S., Wagner, T.L., Coulson, R.N., Cover, J.D., McAudle, T., and Schowalter, T.D.. 1982. Probability functions for components of the Dendroctonus frontalis – host tree population system and their potential use with population models. Res. Popul. Ecol. 24: 123131.CrossRefGoogle Scholar
Feldman, R.M., Curry, G.L., and Coulson, R.N.. 1981. A mathematical model of field population dynamics of the southern pine beetle, Dendroctonus frontalis. Ecol. Modelling 13: 247259.CrossRefGoogle Scholar
Flamm, R.O. 1984. Spatial and temporal patterns of colonization and brood development of Ips avulsus (Eichh.) and I. calligraphus (Germ.) (Coleoptera: Scolytidae) in loblolly pine. M.S. thesis, Texas A&M University, College Station.Google Scholar
Franklin, R.T. 1970. Southern pine beetle population behavior, J. Ga. ent. Soc. 5: 174182.Google Scholar
Gagne, J.A., Wagner, T.L., Sharpe, P.J.H., Coulson, R.N., and Fargo, W.S.. 1982. Reemergence of Dendroctonus frontalis (Coleoptera: Scolytidae) at constant temperatures. Environ. Ent. 11: 12161222.CrossRefGoogle Scholar
Gouger, R.J., Yearian, W.C., and Wilkinson, R.C.. 1975. Feeding and reproductive behavior of Ips avulsus. Fla. Ent. 58: 221229.CrossRefGoogle Scholar
Haack, R.A. 1984. Attack, reproduction, and development of Ips calligraphus (Coleoptera: Scolytidae) in relation to temperature and slash pine phloem thickness. Ph.D. dissertation, Univ. of Florida, Gainesville.Google Scholar
Helwig, J.T., and Council, K.A. [Eds.]. 1979. SAS user's guide, 1979 ed. Statistical Analysis Systems Institute, Inc., Raleigh, NC.Google Scholar
McClelland, W.T., Hain, F.P., DeMars, C.J., Fargo, W.S., Coulson, R.N., and Nebeker, T.E.. 1978. Sampling bark beetle emergence: a review of methodologies, a proposal for standardization, and a new trap design. Bull. ent. Soc. Am. 24: 137140.Google Scholar
Pulley, P.E., Coulson, R.N., Foltz, J.L., Martin, W.C., and Kelley, C.L.. 1977. Sampling intensity, informational content of samples, and precision in estimating within-tree populations of Dendroctonus frontalis. Environ. Ent. 6: 607615.Google Scholar
Rose, W.F., Billings, R.F., and Vite, J.P.. 1981. Southern pine beetles: evaluation of non-stick pheromone trap designs for survey and research. Southwest. Ent. 6: 110.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719721.CrossRefGoogle ScholarPubMed
Schowalter, T.D., Pope, D.N., Coulson, R.N., and Fargo, W.S.. 1981. Patterns of southern pine beetle (Dendroctonus frontalis Zimm.) infestation enlargement. For. Sci. 27: 837849.Google Scholar
Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., and Cole, C.L.. 1977. Distribution model of organism development times. J. Theor. Biol. 66: 2138.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.Google ScholarPubMed
Wagner, T.L., Feldman, R.M., Gagne, J.A., Cover, J.D., Coulson, R.N., and Schoolfield, R.M.. 1981. Factors affecting gallery construction, oviposition, and reemergence by Dendroctonus frontalis in the laboratory. Ann. ent. Soc. Am. 74: 255273.CrossRefGoogle Scholar
Wagner, T.L., Flamm, R.O., and Coulson, R.N.. 1985 a. Strategies for cohabitation among the southern pine bark beetle species: comparisons of life-process biologies. In Branham, S.J. and Thatcher, R.C. (Eds.), Proc. IPM Res. Symp. Apr. 15–18, 1985, Asheville, NC. USDA For. Serv. Gen. Tech. Rep. SO-56.Google Scholar
Wagner, T.L., Wu, H., Feldman, R.M., Sharpe, P.J.H., and Coulson, R.N.. 1985 b. A multiple-cohort approach for simulating development of insect populations under variable temperatures. Ann. ent. Soc. Am. 78: 691704.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984 a. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475487.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N.. 1984 b. Modeling insect development rates: a literature review and application of a biophysical model. Ann. Ent. Soc. Am. 77: 208225.CrossRefGoogle Scholar