Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T13:08:43.881Z Has data issue: false hasContentIssue false

Timing acaricide treatments to prevent Varroa destructor (Acari: Varroidae) from causing economic damage to honey bee colonies

Published online by Cambridge University Press:  02 April 2012

R. W. Currie*
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
P. Gatien
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
*
1 Corresponding author (e-mail: Rob_Currie@Umanitoba.ca).

Abstract

This study consisted of two field experiments designed to assess the effects of acaricide treatment timing on the mean abundance of the mite Varroa destructor Anderson and Trueman and its impact on honey production and colony survival in honey bees, Apis mellifera L. (Hymenoptera: Apidae). In the first experiment, replicated colonies with different levels of infestation by V. destructor were given one of six treatments: untreated, with a low level of infestation by V. destructor; untreated, with a moderate level of infestation by V. destructor; exposed to fluvalinate for 42 days; exposed to two applications of Perizin®; or exposed to four applications of a pour-on formulation of formic acid at 4- or 10-day intervals. The six treatments were applied in either spring or fall. In experiment two, replicated colonies with a high level of infestation by V. destructor were left untreated, exposed to fluvalinate for 42 days, exposed to five applications of formic acid at 7-day intervals, or exposed to an equivalent amount of formic acid applied as a slow-release formulation. For each experiment, V. destructor densities, measured by alcohol wash, and colony survival were monitored for 1 year, and honey production was assessed in the year in which the spring treatment was applied. The results showed that all of the acaricide treatments were effective in reducing the mean abundance of V. destructor. However, efficacy varied with season. Fluvalinate was effective in controlling varroa under either spring or fall treatment conditions. Fall applications of Perizin® provided better control than spring applications. Formic acid provided consistent control of V. destructor in spring applications, regardless of the interval between treatments or whether pour-on or slow-release formulations were used, but was ineffective in the fall. Honey production was improved by spring acaricide treatments in both years. When the mean abundance of V. destructor was 0.02 ± 0.005 mites per bee (2 mites per 100 bees) in mid-April, honey production increased from 66 ± 17 kg per colony in untreated colonies to up to 116 ± 23 kg per colony in colonies treated with acaricide. When V. destructor levels were 0.21 ± 0.02 mites per bee (21 mites per 100 bees) in mid-May, spring acaricide treatments increased honey production from 1.3 ± 2.3 kg per untreated colony to up to 48 ± 17 kg per acaricide-treated colony. For the prairie region of Canada, producers will need to assess colonies in both spring and fall and treat when the mean abundance of V. destructor is more than 0.02 mites per bee (2 mites per 100 bees) in spring to prevent losses in honey production. Producers should treat when the mite level is greater than 0.04 mites per bee (4 mites per 100 bees) in late August to early September to prevent fall or winter colony loss. In this study, tracheal mite (Acarapis woodi (Rennie)) (Acari: Tarsonemidae) levels were very low, so interactions between mites were not studied. If both tracheal and varroa mites are present, lower fall thresholds might be required. In the absence of tracheal mites, colonies with varroa mite levels of more than 0.17 mites per bee (17 mites per 100 bees) in late fall experienced significant winter loss.

Résumé

Notre étude comprend deux expériences qui visent à évaluer les effets du moment de l'année de deux traitements acaricides sur les niveaux d'abondance moyenne de l'acarien Varroa destructor (Anderson et Trueman) et leur impact sur la production de miel et la survie de la colonie chez Apis mellifera L. (Hymenoptera : Apidae). Dans une première expérience, nous avons prodigué à des colonies appariées ayant des niveaux d'infestation différents de V. destructor l'un de six traitements: aucun traitement dans des colonies à infestation faible de V. destructor, aucun traitement dans des colonies à infestation moyenne de V. destructor, exposition au fluvalinate pendant 42 jours, exposition à deux traitements au Perizin®, exposition à quatre applications d'une formulation à déverser d'acide formique à intervalles de 4 jours ou de 10 jours. Les six traitements ont été utilisés soit au printemps, soit à l'automne. Dans une seconde expérience, nous avons laissé des colonies appariées à fort niveau d'infestation de V. destructor sans traitement, les avons exposées au fluvalinate pendant 42 jours, les avons traitées à cinq reprises à l'acide formique à intervalles de 7 jours ou les avons exposées à une dose équivalente d'acide formique par application d'une formulation à libération lente. Dans chaque expérience, nous avons estimé les densités de V. destructor par lavages à l'alcool, suivi la survie des colonies pendant 1 année et déterminé la production de miel pendant l'année qui a suivi le traitement de printemps. Tous les traitements acaricides réussissent à réduire l'abondance moyenne de V. destructor. Cependant, le niveau d'efficacité varie en fonction de la saison. Le fluvalinate est un moyen efficace de contrôle du varroa, tant dans les traitements de printemps que d'automne. Les traitements au Perizin® sont plus efficaces à l'automne qu'au printemps. L'acide formique fournit un contrôle uniforme de V. destructor lors des applications de printemps, quel que soit l'intervalle de temps entre les traitements ou quelle que soit la formulation (à déverser ou à libération lente); il est cependant inefficace à l'automne. La production de miel a été améliorée par les traitements acaricides au printemps pendant les deux années. Lorsque l'abondance moyenne de V. destructor est de 0,02 ± 0,005 acarien par abeille (2 acariens par 100 abeilles) à la mi-avril, la production de miel augmente de 66 ± 17 kg par colonie chez les colonies non traitées jusqu'à 116 ± 23 kg par colonie dans les colonies traitées à l'acaricide. Lorsque les densités de V. destructor sont de 0,21 ± 0,02 acariens par abeille (21 acariens par 100 abeilles) à la mi-mai, les traitents acaricides du printemps augmentent la production de miel de 1,3 ± 2,3 kg chez les colonies non traitées jusqu'à 48 ± 17 kg chez les colonies traitées à l'acaricide. Dans les prairies canadiennes, les producteurs devront évaluer les colonies au printemps et à l'automne et appliquer un traitement lorsque la densité moyenne de V. destructor dépasse 0,02 acarien par abeille (2 acariens par 100 abeilles) au printemps afin d'empêcher les pertes de production de miel. Les producteurs devraient appliquer un traitement lorsque les densités d'acariens dépassent 0,04 acarien par abeille (4 acariens par 100 abeilles) entre la fin d'août et le début de septembre pour éviter la perte de colonies en automne ou en hiver. Dans notre étude, les densités de l'acarien des trachées, Acarapis woodi (Rennie) (Acari : Tarsonemidae), étaient très faibles et les interactions entre les acariens n'ont pas été prises en considération. Si les acariens des trachées et les varroas sont tous les deux présents, il faudrait peut-être utiliser des seuils plus bas à l'automne. En l'absence d'acariens des trachées, les colonies infestées de varroas à une densité supérieure à 0,17 acarien par abeille (17 acariens par 100 abeilles) en fin d'automne connaissent des pertes significatives en hiver.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.L. 1994. Non-reproduction of Varroa jacobsoni in Apis mellifera colonies in Papua New Guinea and Indonesia. Apidologie, 25: 412421.Google Scholar
Ball, B.V. 1985. Acute paralysis virus isolates from honeybee colonies infested with Varroa jacobsoni. Journal of Apicultural Research, 24: 115119.CrossRefGoogle Scholar
Ball, B.V. 1988. The incidence of acute paralysis virus in adult honeybee and mite populations. In European Research on Varroatosis Control: Proceedings of the EC Experts' Group Meeting, Bad Homburg, Germany, 15–17 October 1986. Edited by Cavalloro, R.. A.A. Balkema, Rotterdam. pp. 9598.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M., and Shostak, A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83: 575583.CrossRefGoogle Scholar
Calderone, N.W. 1999. Evaluation of formic acid and a thymol-based blend of natural products for the fall control of Varroa jacobsoni (Acari: Varroidae) in colonies of Apis mellifera (Hymenoptera: Apidae). Journal of Economic Entomology, 92: 253260.CrossRefGoogle Scholar
Calderone, N.W. 2000. Effective fall treatment of Varroa jacobsoni (Acari: Varroidae) with a new formulation of formic acid in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States. Journal of Economic Entomology, 93: 10651075.Google Scholar
Calderone, N.W., and Nasr, M.E. 1999. Evaluation of formic acid formulation for the fall control of Varroa jacobsoni (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in a temperate climate. Journal of Economic Entomology, 92: 526533.Google Scholar
Currie, R.W. 1982. Some factors affecting the orientation of drone honey bees. Ph.D. thesis, University of Manitoba, Winnipeg, Manitoba.Google Scholar
Currie, R.W., and Jay, S.C. 1991 a. The influence of a colony's queen state on the drifting of drone honeybees (Apis mellifera L.). Apidologie, 22: 183195.CrossRefGoogle Scholar
Currie, R.W., and Jay, S.C. 1991 b. Drifting behaviour of drone honey bees (Apis mellifera L.) in commercial apiary layouts. Journal of Apicultural Research, 30: 6168.Google Scholar
De Guzman, L.I., Rinderer, T.E., and Beaman, L.D. 1993. Survival of Varroa jacobsoni Oud. (Acari: Varroidae) away from a living host. Experimental and Applied Acarology, 17: 283290.Google Scholar
DeJong, D., Gonçalves, L.S., and Morse, A. 1984. Dependence on climate of the virulence of Varroa jacobsoni. Bee World, 65: 117121.Google Scholar
Delaplane, K.S., and Hood, W.M. 1997. Effects of delayed acaricide treatment in honey bee colonies parasitized by Varroa jacobsoni and a late-season treatment threshold for the southeastern USA. Journal of Apicultural Research, 36: 125132.Google Scholar
Delaplane, K.S., and Hood, W.M. 1999. Economic threshold for Varroa jacobsoni Oud. in the south-eastern USA. Apidologie, 30: 383395.Google Scholar
Delfinado-Baker, M. 1984. Acarapis woodi in the United States. American Bee Journal, 124: 805806.Google Scholar
Downey, D.L., and Winston, M.L. 2001. Honey bee colony mortality and productivity with single and dual infestations of parasitic mite species. Apidologie, 32: 567575.CrossRefGoogle Scholar
Elzen, P.J., Eischen, F.A., Baxter, J.B., Pettis, J., Elzen, G.W., and Wilson, W.T. 1998. Fluvalinate resistance in Varroa jacobsoni from several geographic locations. American Bee Journal, 138: 674676.Google Scholar
Fries, I. 1989. Short-interval treatments with formic acid for control of Varroa jacobsoni in honey bee (Apis mellifera ) colonies in cold climates. Swedish Journal of Agricultural Research, 19: 213216.Google Scholar
Fries, I., Camazine, S., and Sneyd, J. 1994. Population dynamics of Varroa jacobsoni: a model and a review. Bee World, 75: 528.CrossRefGoogle Scholar
Gatien, P., and Currie, R.W. 2003. Timing of acaricide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees. The Canadian Entomologist, 135: 749763.CrossRefGoogle Scholar
Glinski, Z., and Jarosz, J. 1992. Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie, 23: 2531.CrossRefGoogle Scholar
Gruszka, J. 1998. Beekeeping in western Canada. Alberta Agriculture, Food and Rural Development, Edmonton, Alberta.CrossRefGoogle Scholar
Horticultural and Food Research Institute of New Zealand. 2001. A review of treatment options for control of varroa mite in New Zealand. Report to the Ministry of Agriculture and Forestry. HortResearch Client Report No. 2001/249. MAF Biosecurity, Wellington, New Zealand. Available from http://www.biosecurity.govt.nz/pests-diseases/animals/varroa/papers/varroa-treatment-options.pdf.Google Scholar
Jay, S.C., and Dixon, D. 1988. Drifting behaviour and honey production of honeybee colonies maintained on pallets. Journal of Apicultural Research, 27: 213218.Google Scholar
Korpela, S., Aarhus, A., Fries, I., and Hansen, H. 1992. Varroa jacobsoni Oud. in cold climates: population growth, winter mortality and influence on the survival of honey bee colonies. Journal of Apicultural Research, 31: 157164.Google Scholar
Murilhas, AM. 2002. Varroa destructor infestation impact on Apis mellifera carnica capped worker brood production, bee population and honey storage in a Mediterranean climate. Apidologie, 33: 271281.CrossRefGoogle Scholar
Ostermann, D.J. 2002. Interactions of varroa, Varroa destructor Anderson and Trueman, with chalkbrood, Ascosphaera apis (Maassen ex Claussen) Olive and Apiltoir, and Nosema, Nosema apis Zander, in honey bee, Apis mellifera L., colonies treated with formic acid and the influence of hive and ambient conditions on formic acid concentration in the hive. M.Sc. thesis, University of Manitoba, Winnipeg, Manitoba.Google Scholar
Ostermann, D.J., and Currie, R.W. 2004. The effect of formic acid formulations on honey bee, Apis mellifera L., colonies, and the influence of colony and ambient conditions on formic acid concentration in the hive. Journal of Economic Entomology, 97(5): 15001508.Google Scholar
Pest Management Regulatory Agency. 1994. Proposed scheduling of 65 percent formic acid for the detection and control of honey bee mites. Note to CAPCO C94–05, 30 March 1994. Submission Management and Information Division, Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario.Google Scholar
Pettis, J. 2004. A scientific note on Varroa destructor resistance to coumaphos in the United States. Apidologie, 35: 9192.Google Scholar
Ritter, W. 1985. Perizin: Ein neues systemisches Medikament zur Bekämpfung der Varroatose. Tieraerztliche Umschau, 40: 1415.Google Scholar
Ritter, W. 1986. Varroatosis in the honey bee, Apis mellifera, and its control with Perizin®. Veterinary Medical Review, 1: 316.Google Scholar
Schneider, P. 1987. The influence of Varroa infestation during pupal development on the flight activity of the worker honey bees. Apidologie, 18: 366368.Google Scholar
Skinner, J.A., Parkman, J.P., and Studer, M.P. 2001. Evaluation of honey bee miticides, including temporal and thermal effects on formic acid gel vapours, in the central south-eastern USA. Journal of Apicultural Research, 40: 8189.Google Scholar
Snedecor, G.W., and Cochran, W.G. 1980. Statistical methods. 7th ed. The Iowa State University Press, Ames, Iowa.Google Scholar
Strange, J., and Sheppard, W. 2001. Optimum timing of miticide applications for control of Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) in Washington State, USA. Journal of Economic Entomology, 94: 13241331.CrossRefGoogle ScholarPubMed