Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:13:19.414Z Has data issue: false hasContentIssue false

Trophic generalism at the population level in ground beetles (Coleoptera: Carabidae)

Published online by Cambridge University Press:  29 December 2015

Marcin Zalewski*
Affiliation:
Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland
Dorota Dudek-Godeau
Affiliation:
Department of Zoology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
Jean-François Godeau
Affiliation:
Faculty of Biology and Environmental Sciences, Cardinal Stefan, Wyszyński University, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
Krzysztof Kujawa
Affiliation:
Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland
Paweł Sienkiewicz
Affiliation:
Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
Alexei V. Tiunov
Affiliation:
Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
Werner Ulrich
Affiliation:
Nicolaus Copernicus University in Toruń, Chair of Ecology and Biogeography, Lwowska 39, 87-100 Toruń, Poland
*
1 Corresponding author (e-mail: zlewek@yahoo.com).

Abstract

A growing body of evidence suggests trophic generalism (feeding on resources from more than one trophic level and/or on different resources of the same trophic level) is a widespread feature among ground beetles (Coleoptera: Carabidae). However, it remains unclear whether trophic generalism applies to single individuals, at the intrapopulation or interpopulation level. Here we present stable isotope data (δ15N, δ13C) of seven common European carabid species on an archipelago of 18 lake islands in northeastern Poland. We found strong differences in isotopic ratios between individuals of the same population as well as between different populations, indicating that carabids are opportunistic feeders and that the degree of opportunism differs between habitats and between islands. Trophic niche breadth as assessed by isotopic ratios was influenced by local habitat diversity. We suggest that opportunistic usage of different local resources results in striking differences between local populations and a very broad trophic niche observed at regional level.

Résumé

Un nombre croissant de preuves suggèrent que le généralisme alimentaire (c’est-à-dire l’utilisation de ressources appartenant à plus d’un niveau trophique et/ou de ressources très variées au sein d’un même niveau trophique) est un caractère répandu chez les carabes (Coleoptera: Carabidae). Pourtant, un doute subsiste quant à savoir si le généralisme trophique s’applique à des individus à un niveau intra- ou interpopulationnel. Nous présentons ici des données concernant les isotopes stables (δ15N et δ13C) mesurés pour sept espèces communes de Carabidae européens prélevés dans un archipel de 18 îles lacustres du nord-est de la Pologne. Nous avons décelé de fortes différences de rapports isotopiques entre des individus d’une même population ainsi qu’entre individus de populations séparées, indiquant que les carabes ont des habitudes alimentaires opportunistes et que le degré d’opportunisme diffère d’un habitat à l’autre et d’une île à l’autre. La niche trophique, estimée sur base de rapports isotopiques, est influencée par la diversité locale d’habitats. Nous proposons que l’exploitation opportuniste des ressources alimentaires locales a pour conséquence des différences marquantes entre les populations locales et la très large niche trophique observée à l’échelle régionale.

Type
Behaviour & Ecology
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Patrice Bouchard

References

Cody, M.L. and Diamond, J.M. 1975. Ecology and evolution of communities. Harvard University Press, Cambridge, Massachusetts, United States of America.Google Scholar
Coll, M. and Guershon, M. 2002. Omnivory in terrestrial arthropods: mixing plant and prey diets. Annual Review of Entomology, 47: 267297. doi:10.1146/annurev.ento.47.091201.145209.CrossRefGoogle ScholarPubMed
Drees, C., Hüfner, S., Matern, A., Neve, G., and Assmann, T. 2011. Repeated sampling detects gene flow in a flightless ground beetle in a fragmented landscape. Hereditas, 148: 3645. doi:10.1111/j.1601-5223.2010.02212.x.CrossRefGoogle Scholar
Duffy, J.E., Vardinale, B.J., France, K.E., McIntyre, P.B., Thébault, E., and Loreau, M. 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10: 522538. doi:10.1111/j.1461-0248.2007.01037.x.CrossRefGoogle ScholarPubMed
Eastwood, M.M., Donahue, M.J., and Fowler, A.E. 2007. Reconstructing past biological invasions: niche shifts in response to invasive predators and competitors. Biological Invasions, 9: 397407. doi:10.1007/s10530-006-9041-5.CrossRefGoogle Scholar
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., and Paulißen, D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18: 1258.Google Scholar
Ferrari, J., Godfray, H.C.J., Faulconbridge, A.S., Prior, K., and Via, S. 2006. Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution, 60: 15741584. doi:10.1111/j.0014-3820.2006.tb00502.x.Google ScholarPubMed
Gibb, H. and Cunningham, S.A. 2011. Habitat contrasts reveal a shift in the trophic position of ant assemblages. Journal of Animal Ecology, 80: 119127. doi:10.1111/j.1365-2656.2010.01747.x.CrossRefGoogle Scholar
Hengeveld, R. 1980a. Polyphagy, oligophagy and food specialization in ground beetles (Coleoptera, Carabidae). Netherlands Journal of Zoology, 30: 564584.CrossRefGoogle Scholar
Hengeveld, R. 1980b. Food specialization in ground beetles: an ecological or phylogenetic process? Netherlands Journal of Zoology, 30: 585594.CrossRefGoogle Scholar
Hyodo, F., Kohzu, A., and Tayasu, I. 2010. Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecological Research, 25: 745756. doi:10.1007/s11284-010-0719-x.CrossRefGoogle Scholar
Ikeda, H., Kubota, K., Kagawa, A., and Sota, T. 2010. Diverse diet compositions among harpaline ground beetle species revealed by mixing model analyses of stable isotope ratios. Ecological Entomology, 35: 307316. doi:10.1111/j.1365-2311.2010.01182.x.CrossRefGoogle Scholar
Jackson, A.L., Inger, R., Parnell, A., and Bearhop, S. 2011. Comparing isotopic niche widths among and within communities: SIBER—stable isotope bayesian ellipses in R. Journal of Animal Ecology, 80: 595602. doi:10.1111/j.1365-2656.2011.01806.x.CrossRefGoogle ScholarPubMed
Korolev, О. and Brygadyrenko, V. 2014. Influence of individual variation in the trophic spectra of Pterostichus melanarius (Coleoptera, Carabidae) on the adaptation possibilities of its population. Folia Oecologica, 41: 3443.Google Scholar
Kuussaari, M., Singer, M., and Hanski, I. 2000. Local specialization and landscape-level influence on host use in an herbivorous insect. Ecology, 81: 21772187.CrossRefGoogle Scholar
Lagisz, M., Wolff, K., Sanderson, R.A., and Laskowski, R. 2010. Genetic population structure of the ground beetle, Pterostichus oblongopunctatus, inhabiting a fragmented and polluted landscape: evidence for sex-biased dispersal. Journal of Insect Science, 10: 120. doi:10.1673/031.010.10501.CrossRefGoogle ScholarPubMed
Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E., Jud, Z.R., et al. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews, 87: 545562. doi:10.1111/j.1469-185X.2011.00208.x.CrossRefGoogle ScholarPubMed
Layman, C.A., Arrington, D.A., Montanña, C.G., and Post, D.M. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88: 4248.CrossRefGoogle ScholarPubMed
Lindroth, C.H. and Bangsholt, F. 1985. The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica. Volume 15, part 1. E.J. Brill, Leiden, The Netherlands.CrossRefGoogle Scholar
Lundgren, J.G. 2009. Relationships of natural enemies and non-prey foods. Springer International, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Martinez del Rio, C., Wolf, N., Carleton, S.A., and Gannes, L.Z. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews, 84: 91111. doi:10.1111/j.1469-185X.2008.00064.x.CrossRefGoogle Scholar
McCutchan, J.H., Lewis, W.M., Kendall, C., and McGrath, C.C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 378390. doi:10.1034/j.1600-0706.2003.12098.x.CrossRefGoogle Scholar
McNabb, D.M., Halaj, J., and Wise, D.H. 2001. Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia, 45: 289297. doi:10.1078/0031-4056-00087.CrossRefGoogle Scholar
Michener, R. and Lajtha, K. 2007. Stable isotopes in ecology and environmental science, 2nd edition. Blackwell Publishing, Malden, Massachusetts, United States of America.CrossRefGoogle Scholar
Newsome, S.D., Martinez del Rio, C., Bearhop, S., and Phillips, D.L. 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5: 429436.CrossRefGoogle Scholar
Okuzaki, Y., Tayasu, I., Okuda, N., and Sota, T. 2010. Stable isotope analysis indicates trophic differences among forest floor carabids in Japan. Entomologia Experimentalis et Applicata, 135: 263270. doi:10.1111/j.1570-7458.2010.00987.x.CrossRefGoogle Scholar
Polis, G.A. and Strong, D.R. 1996. Food web complexity and community dynamics. The American Naturalist, 147: 813846.CrossRefGoogle Scholar
Potapov, A.M., Semenina, E.E., Kurakov, A.V., and Tiunov, A.V. 2013. Strong 13C/12C and weak 15N/14N isotopic fractionation in an experimental detrital foodweb (litter-fungi-collembolans). Ecological Research, 28: 10691079.CrossRefGoogle Scholar
Ribera, I., Foster, G.N., Downie, I.S., McCracken, D.I., and Abernethy, V.J. 1999. A comparative study of the morphology and life traits of Scottish ground beetles (Coleoptera, Carabidae). Annales Zoologici Fennici, 36: 2137.Google Scholar
Sander, A.C., Purtauf, T., Holzhauer, S.I.J., and Wolters, V. 2006. Landscape effects on the genetic structure of the ground beetle Poecilus versicolor Sturm 1824. Biodiversity and Conservation, 15: 245259. doi:10.1007/s10531-004-7182-3.CrossRefGoogle Scholar
Sasakawa, K., Ikeda, H., and Kubota, T. 2010. Feeding ecology of granivorous carabid larvae: a stable isotope analysis. Journal of Applied Entomology, 134: 116122. doi:10.1111/j.1439-0418.2009.01451.x.CrossRefGoogle Scholar
Saska, P. 2008. Effect of diet on the fecundity of three carabid beetles. Physiological Entomology, 33: 188192.CrossRefGoogle Scholar
Scheu, S. and Falca, M. 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia, 123: 285296.CrossRefGoogle Scholar
Šerić Jelaska, L., Vaughan, I., Brown, D., and Symondson, W.O.C. 2013. What do carabids have for dinner? – revealing the menu list using molecular analyses. In Carabids and man – can we live with(out) each other? Book of abstracts with conference programme. XVIth Europaean Carabidologists Meeting, Prague, Czech Republic, 22–27 September 2013. Edited by P. Saska, M. Knapp, A. Honěk, and Z. Martinková. Crop Research Institute Publishing, Prague, Czech Republic. Pp. 52.Google Scholar
Thiele, H.U. 1977. Carabid beetles in their environments. Springer, Berlin, Germany.CrossRefGoogle Scholar
Thies, C., Haenke, S., Scherber, C., Bengtsson, J., Bommarco, R., Clement, L.W., et al. 2011. The relationship between agricultural intensification and biological control – experimental tests across Europe. Ecological Applications, 21: 21872196.CrossRefGoogle ScholarPubMed
Thompson, R.M., Hemberg, M., Starzomski, B.M., and Shurin, J.B. 2007. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology, 88: 612617.CrossRefGoogle ScholarPubMed
Tillberg, C.V., McCarthy, D.P., Dolezal, A.G., and Suarez, A.V. 2006. Measuring the trophic ecology of ants using stable isotopes. Insectes Sociaux, 53: 6569.CrossRefGoogle Scholar
Vanderklift, M.A. and Ponsard, S. 2003. Sources of variation in consumer-diet d 15N enrichment: a meta-analysis. Oecologia, 136: 169182. doi:10.1007/s00442-003-1270-z.CrossRefGoogle Scholar
Zalewski, M. 2004. Do smaller islands host younger populations? A case study on metapopulations of three carabid species. Journal of Biogeography, 31: 11391148.CrossRefGoogle Scholar
Zalewski, M., Dudek, D., Godeau, J.F., and Maruszkiewicz, M. 2012. Stable isotopic research on ground beetles. Review of methods. Baltic Journal of Coleopterology, 12: 9198.Google Scholar
Zalewski, M., Dudek, D., Tiunov, A.V., Godeau, J.-F., Okuzaki, Y., Ikeda, H., et al. 2014. High niche overlap in the stable isotope space of ground beetles. Annales Zoologici Fennici, 51: 301312.CrossRefGoogle Scholar
Zalewski, M., Dudek, D., Tiunov, A.V., Godeau, J.-F., Okuzaki, Y., Ikeda, H., et al. 2015. Wing morphology is linked to stable isotope composition of nitrogen and carbon in ground beetles (Coleoptera: Carabidae). European Journal of Entomology, 112: 810817.CrossRefGoogle Scholar