Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T17:40:43.176Z Has data issue: false hasContentIssue false

Two new species of Diodontus (Hymenoptera: Pemphredonidae) from the western Mediterranean and their phylogenetic relationships

Published online by Cambridge University Press:  14 August 2019

Eduardas Budrys*
Affiliation:
Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
Anna Budrienė
Affiliation:
Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
Svetlana Orlovskytė
Affiliation:
Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
Villu Soon
Affiliation:
Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
*
1Corresponding author (e-mail: eduardas.budrys@gamtc.lt)

Abstract

Two new species of Diodontus Curtis, 1834 (Hymenoptera: Pemphredonidae) are described. Diodontus polytylus Budrys new species is widespread in North Africa, from Libya and Chad to Morocco, as well as in southern Spain and Portugal. Diodontus guichardi Budrys new species was found in several localities in Morocco. The new species have small differences in their morphology; however, they can be easily separated using molecular characters. Comparison of 17 molecular markers has revealed that the highest evolutionary divergence is observed in mitochondrial gene ND6 and internal transcribed spacer ITS2. The variable regions of the nuclear rDNA genes 18S and 28S demonstrated the lowest evolutionary divergence; thus they were of the least use for species identification. The most coherent reconstruction of phylogeny, in comparison to other groups of markers, was obtained using exons of nuclear protein-coding genes. A provisional key to the species of D. minutus (Fabricius, 1793) species group of the Mediterranean Region is presented.

Type
Systematics and Morphology
Copyright
© Entomological Society of Canada 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler, D. 2005. GenBank. Nucleic Acids Research, 33: D34D38. https://doi.org/10.1093/nar/gki063.CrossRefGoogle ScholarPubMed
Bohart, R.M. and Menke, A.S. 1976. Sphecid wasps of the world. A generic revision. University of California Press, Berkeley, California, United States of America.Google Scholar
Budrys, E. 1996. Morphometric similarity and summary of measurements of Palearctic species of the genus Diodontus Curtis (Hymenoptera, Sphecidae). In Lietuvos entomologų darbai (Lietuvos entomologų draugijos 30-mečiui). Edited by Jonaitis, V.. Lithuanian Entomological Society, Institute of Ecology, Vilnius, Lithuania. Pp. 3547.Google Scholar
Dollfuss, H., Bouček, Z., and Bitsch, J. 2001. Pemphredonini. In Faune de France 86. Hyménoptères Sphecidae d’Europe Occidentale, volume 3. Edited by Bitsch, J.. Fédération Française des Sociétés de Sciences Naturelles, Paris, France. Pp. 55151.Google Scholar
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 598.Google Scholar
Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 18701874. https://doi.org/10.1093/molbev/msw054.CrossRefGoogle ScholarPubMed
Maddison, W.P. and Maddison, D.R. 2015. Mesquite: a modular system for evolutionary analysis. Version 3.04 [online]. Available from https://mesquiteproject.org [accessed 5 September 2018].Google Scholar
Olszewski, P., Ljubomirov, T., Wiśniowski, B., Kowalczyk, J.K., and Krzyżyński, M. 2016. New records of the genus Diodontus Curtis, 1834 (Hymenoptera: Crabronidae) from Bulgaria, Montenegro and Poland, with a key to central and eastern European species. Zootaxa, 4061: 164172. https://doi.org/10.11646/zootaxa.4061.2.6.CrossRefGoogle ScholarPubMed
Orlovskytė, S., Budrys, E., Budrienė, A., Radzevičiūtė, R., and Soon, V. 2016. Sibling species in the Chrysis ignita complex: molecular, morphological and trophic differentiation of Baltic species, with a description of two new cryptic species (Hymenoptera: Chrysididae). Systematic Entomology, 41: 771793. https://doi.org/10.1111/syen.12190.CrossRefGoogle Scholar
Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., et al. 2017. Evolutionary history of the Hymenoptera. Current Biology, 27: 10131018. https://doi.org/10.1016/j.cub.2017.01.027.CrossRefGoogle ScholarPubMed
Pulawski, W.J. 2018. Catalog of Sphecidae sensu lato (= Apoidea excluding Apidae) [online]. Available from https://www.calacademy.org/scientists/projects/catalog-of-sphecidae [accessed 2 August 2018].Google Scholar
Ratnasingham, S. and Hebert, P.D.N. 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes, 7: 355364. https://doi.org/10.1111/j.1471-8286.2007.01678.x. CrossRefGoogle Scholar
Ratnasingham, S. and Hebert, P.D.N. 2013. A DNA-based registry for all animal species: the barcode index number (BIN) system. Public Library of Science One, 8: e66213. https://doi.org/10.1371/journal.pone.0066213.Google ScholarPubMed
Rokas, A. 2000. Wolbachia as a speciation agent. Trends in Ecology and Evolution, 15: 4445. https://doi.org/10.1016/S0169-5347(99)01783-8.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574. https://doi.org/10.1093/bioinformatics/btg180.CrossRefGoogle ScholarPubMed
Sann, M., Niehuis, O., Peters, R.S., Mayer, C., Kozlov, A., Podsiadlowski, L., et al. 2018. Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. BMC Evolutionary Biology, 18: 71. https://doi.org/10.1186/s12862-018-1155-8.CrossRefGoogle ScholarPubMed
Schmid-Egger, C., Straka, J., Ljubomirov, T., Blagoev, G.A., Morinière, J., and Schmidt, S. 2018. DNA barcodes identify 99 per cent of apoid wasp species (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae) from the western Palearctic. Molecular Ecology Resources, 19: 476484. https://doi.org/10.1111/1755-0998.12963.CrossRefGoogle ScholarPubMed
Stunžėnas, V., Petkevičiūtė, R., and Stanevičiūtė, G. 2011. Phylogeny of Sphaerium solidum (Bivalvia) based on karyotype and sequences of 16S and ITS1 rDNA. Central European Journal of Biology, 6: 105117. https://doi.org/10.2478/s11535-010-0101-6.Google Scholar
Tusnády, G.E., Simon, I., Váradi, A., and Arányi, T. 2005. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Research, 33: e9. https://doi.org/10.1093/nar/gni012.CrossRefGoogle ScholarPubMed