Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T00:11:52.822Z Has data issue: false hasContentIssue false

THE USE OF DEGREE-DAYS TO PREDICT EMERGENCE OF THE APPLE MAGGOT, RHAGOLETIS POMONELLA (DIPTERA: TEPHRITIDAE), IN ONTARIO

Published online by Cambridge University Press:  31 May 2012

J. E. Laing
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1
J. M. Heraty
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1

Abstract

Adult flies of the apple maggot, Rhagoletis pomonella (Walsh), were monitored for 6 years at Guelph, Ontario using aerial and ground-emergence traps. Two degree-day (°D) models to predict adult emergence were tested. Fifty percent of the adults were captured in an average of 809 ± 50 (SD) °D8.7 and first capture was at 638 ± 60°D6.4. Degree-day models which have been proposed previously and those developed in this study were only slightly more accurate than average calendar date for predicting adult emergence. Differences in °D requirements for emergence in each year were correlated with the length of cold period and the correlation suggested that the length of cold period preceding morphogenesis affects either the number of °D required to complete postdiapause development or the threshold temperature for development.

Résumé

Les adultes de la mouche de la pomme, Rhagoletis pomonella (Walsh), ont été suivis pendant six ans à Guelph, Ontario à l'aide de pièges à émergence placés au dessus ainsi qu'au niveau du sol. Deux modèles basés sur les degrés-jours (°D), destinés à prédire l'émergence des adultes, ont été testés. Cinquante pourcent des adultes ont été capturés après 809 ± 50 (DS) °D8.7 en moyenne, la première capture ayant été effectuée à 638 ± 60°D6.4. Les modèles basés sur les degrés-jours proposés auparavant, de même que ceux présentés ici, sont seulement un peu plus précis que la date approximative pour prévoir l'émergence des adultes. Les différences entre années pour les °D nécessaires à l'émergence étaient corrélés avec la durée de la période de froid et la corrélation indique que la durée du refroidissement précédant la morphogénèse affecte soit le nombre de °D requis pour compléter le développement post-diapause, soit le seuil thermique du développement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AliNiazee, M. T. 1976. Thermal unit requirements for determining adult emergence of the western cherry fruit fly (Diptera: Tephritidae) in the Willamette Valley of Oregon. Environ. Ent. 5: 397402.CrossRefGoogle Scholar
AliNiazee, M. T. 1979. A computerized phenology model for predicting biological events of Rhagoletis indifferens (Diptera: Tephritidae). Can. Ent. 111: 11011109.Google Scholar
Allen, J. C. 1976. A modified sine wave method for calculating degree-days. Environ. Ent. 5: 388396.CrossRefGoogle Scholar
Baker, C. R. B. and Miller, G. W.. 1978. The effect of temperature on the post-diapause development of four geographical populations of the European cherry fruit fly (Rhagoletis cerasi). Entomologia exp. appl. 23: 113.Google Scholar
Brown, R. D. and AliNiazee, M. T.. 1977. Synchronization of adult emergence of the western cherry fruit fly in the laboratory. Ann. ent. Soc. Am. 70: 678680.CrossRefGoogle Scholar
Chiang, H. C. and Sisson, V.. 1968. Temperature relationships of the development of northern corn rootworm eggs. J. econ. Ent. 61: 14061410.CrossRefGoogle Scholar
Danks, H. V. 1978. Modes of seasonal adaptation in the insects. I. Winter survival. Can. Ent. 110: 11671205.Google Scholar
Lathrop, F. H. and Dirks, C. O.. 1945. Timing the seasonal cycles of insects: the emergence of Rhagoletis pomonella. J. econ. Ent. 38: 330334.Google Scholar
MacPhee, A. W. 1964. Cold-hardiness, habitat and winter survival of some orchard arthropods in Nova Scotia. Can. Ent. 96: 617625.CrossRefGoogle Scholar
Maxwell, C. W. and Parsons, E. C.. 1969. Relationships between hour-degree F soil temperature summations and apple maggot emergence. J. econ. Ent. 62: 13101313.Google Scholar
Morris, R. F. and Fulton, W. C.. 1970. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent. Soc. Can. 70. 60 pp.Google Scholar
Neilson, W. T. A. 1962. Effects of temperature on development of overwintering pupae of the apple maggot, Rhagoletis pomonella (Walsh). Can. Ent. 94: 924928.Google Scholar
Neilson, W. T. A., Knowlton, A. D., and McRae, K. B.. 1981. Preoviposition and oviposition periods of the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae). Can. Ent. 113: 10611067.Google Scholar
Oatman, E. R. 1964. Apple maggot emergence and seasonal activity in Wisconsin. J. econ. Ent. 57: 676679.CrossRefGoogle Scholar
Reid, J. A. K. and Laing, J. E.. 1976. Developmental threshold and degree-days to adult emergence of the apple maggot Rhagoletis pomonella (Walsh) collected in Ontario. Proc. ent. Soc. Ont. 107: 1922.Google Scholar
Reissig, W. H., Barnard, J., Weires, R. W., Glass, E. H., and Dean, R. W.. 1979. Prediction of apple maggot fly emergence from thermal unit accumulation. Environ. Ent. 8: 5154.CrossRefGoogle Scholar
Stevenson, A. B. 1963. Laboratory emergence of adults from overwintering pupae of the apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Can. Ent. 95: 11541159.CrossRefGoogle Scholar
Trottier, R. J. 1975. A warning system for pests in apple orchards. Can. Agric. 20: 3132.Google Scholar
Wallace, D. R. and Sullivan, C. R.. 1963. Laboratory and field investigations of the effect of temperature on the development of Neodiprion sertifer (Geoff.) in the cocoon. Can. Ent. 95: 10511066.Google Scholar