Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T17:53:46.884Z Has data issue: false hasContentIssue false

Variability and inheritance of the chorionic tubercles on eggs of Listronotus oregonensis (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  02 April 2012

Guy Boivin*
Affiliation:
Agriculture and Agri-food Canada, Horticultural Research and Development Centre, 430 Boulevard Gouin, St-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
Jean-Pierre Nénon
Affiliation:
Laboratoire d'Écobiologie des Insectes Parasitoïdes, Université de Rennes 1, Campus de Beaulieu, Rennes CEDEX, 35042 France
*
1 Corresponding author (e-mail: boiving@agr.gc.ca).

Abstract

The tubercles present on the egg chorion of the carrot weevil, Listronotus oregonensis (LeConte), are described and their variability in density quantified between females. Tubercle density varied by a factor of six between females, from 19 000 to 115 000 tubercles per mm2. The average density of tubercles for a given female remained constant throughout its oviposition period. When isofemale lines were created, the average tubercle density remained constant from generation to generation, and crossing experiment suggested that tubercle density was transmitted by the female. Using isofemale lines with low and high densities of tubercles, no effect on egg survival in water or susceptibility to egg parasitism was found. Tubercle density and the heritability of this character suggest a probable reproductive advantage for females that produce eggs with this chorionic pattern even though the precise role of these traits remains to be determined.

Résumé

Les tubercules présents sur le chorion de l'oeuf du charançon de la carotte, Listronotus oregonensis (LeConte), sont décrits ainsi que la variabilité en densité de ces tubercules entre les femelles. La densité des tubercules varie par un facteur de six entre les femelles, passant de 19 000 à 115 000 tubercules par mm2. La densité moyenne des tubercules reste cependant constante pour une femelle donnée tout au long de sa période de ponte. Lorsque des lignées isofemelles ont été crées, le nombre moyen de tubercules est resté constant d'une génération à l'autre et des expériences de croisement suggèrent que la densité des tubercules est transmise par la femelle. En comparant des lignées isofemelles avec de basse et de haute densités de tubercules, aucun effet de l'immersion dans l'eau ou de susceptibilité au parasitisme n'a pu être démontré. Le haut niveau de variabilité observé et l'héritabilité de ce caractère suggèrent que les femelles produisant des oeufs avec une densité élevée de tubercules ont un avantage reproductif sous certaines circonstances.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biemont, J.C., Chauvin, G., Hamon, C. 1981. Ultrastructure and resistance to water loss in eggs of Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Journal of Insect Physiology 27: 667–79CrossRefGoogle Scholar
Boivin, G. 1999. Integrated management for carrot weevil. Integrated Pest Management Reviews 4: 2137Google Scholar
Carcupino, M., Lucchi, A. 1995. Eggshell fine structure of Bradysia aprica (Winnertz) (Diptera: Sciaridae). International Journal of Insect Morphology and Embryology 24: 109–17CrossRefGoogle Scholar
Chauvin, G., Barbier, R. 1974. Ultrastructure des oeufs parthénogénétiques de Luffia ferchaultella Steph. et de Fumea casta Pallas (Lepidoptera: Psychidae). Bulletin Biologique de la France et de la Belgique 108: 245–52Google Scholar
Chauvin, G., Barbier, R. 1979. Mophogénèse de l'enveloppe vitelline, ultrastructure sérosale chez Korscheltellus lupulinus L. (Lepidoptera: Hepialidae). International Journal of Insect Morphology and Embryology 8: 375–86CrossRefGoogle Scholar
Chauvin, J.T., Chauvin, G. 1980. Formation des reliefs externes de l'oeuf de Micropteryx calthella L. (Lepidoptera: Micropterigidae). Canadian Journal of Zoology 58: 761–66Google Scholar
De Loof, A. 1971. Synthesis and deposition of oocyte envelopes in the Colorado beetle, Leptinotarsa decemlineata Say. Zeitschrift fuer Zellforschung und Milkroskopische Anatomie 115: 351–60Google Scholar
Gaino, E., Fava, A. 1995. Egg general morphology and eggshell fine organization of the grain weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Entomologia (Bari) 29: 8798Google Scholar
Gauvin, M.J., Boivin, G., Nénon, J.P. 2001. Hydropy and ultrastructure of egg envelopes in Aleochara bilineata (Coleoptera, Staphylinidae). Zoomorphology (Berlin) 120: 171–5Google Scholar
Gerrity, R.G., Rempel, J.G., Sweeny, P.R., Church, N.S. 1967. The embryology of Lytta viridana LeConte (Coleoptera: Meloidae). II. The structure of the vitelline membrane. Canadian Journal of Zoology 45: 497502Google Scholar
Hinton, H.E. 1969. Respiratory systems of insect egg shells. Annual Review of Entomology 14: 343–68Google Scholar
Hinton, H.E. 1981. Biology of insect eggs. Oxford, United Kingdon: Pergamon PressGoogle Scholar
Karnovsky, M.J. 1965. A formaldehyde-gluteraldehyde fixative of high osmolality for use in electron micros-copy. Journal of Cell Biology 276: 137A–8AGoogle Scholar
Kawasaki, H., Sato, H., Susuki, M. 1975. Structural proteins in the egg envelopes of the mealworm beetle, Tenebrio molitor. Insect Biochemistry 5: 2534CrossRefGoogle Scholar
Larink, O., Bilinski, S.M. 1989. Fine structure of the egg envelopes of one proturan and two collembolan genera (Apterygota). International Journal of Insect Morphology and Embryology 18: 3945Google Scholar
Martel, P., Svec, H.J., Harris, C.R. 1976. The life history of the carrot weevil, Listronotus oregonensis (Coleoptera: Curculionidae), under controlled conditions. The Canadian Entomologist 108: 931–4CrossRefGoogle Scholar
Nénon, J.P., Boivin, G., Allo, M.R. 1995. Fine structure of the egg envelopes in Listronotus oregonensis (LeConte) (Coleoptera: Curculionidae) and morphological adaptations to oviposition sites. International Journal of Insect Morphology and Embryology 24: 333–42CrossRefGoogle Scholar
Plachter, H. 1981. Chorionic structures of the eggshells of 15 fungus- and root-gnat species (Diptera: Mycetophiloidea). International Journal of Insect Morphology and Embryology 10: 4363Google Scholar
Rempel, J.G., Church, N.S. 1965. The embryology of Lytta viridana LeConte (Coleoptera: Meloidae). I. Maturation, fertilization, and cleavage. Canadian Journal of Zoology 43: 915–25Google Scholar
Simonet, D.E. 1981 Carrot weevil management in Ohio vegetables. Ohio Report 66: 83–5Google Scholar
Simonet, D.E., Davenport, B.L. 1981. Temperature requirements for development and oviposition of the carrot weevil. Annals of the Entomological Society of America 74: 312–5CrossRefGoogle Scholar
Stevenson, A.B. 1986. Relationship between temperature and development of the carrot weevil, Listronotus oregonensis (LeConte) (Coleoptera: Curculionidae), in the laboratory. The Canadian Entomologist 118: 1287–90Google Scholar
Sweeny, P.R., Church, N.S., Rempel, J.G., Gerrity, R.G. 1968. The embryology of Lytta viridana LeConte (Coleoptera: Meloidae). II. The structure of the chorion and micropyles. Canadian Journal of Zoology 46: 213–7CrossRefGoogle Scholar
Whitcomb, W.D. 1965. The carrot weevil in Massachusetts. Biology and control. University of Massachussets Agricultural Experimental Station Bulletin 550: 130Google Scholar