Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T12:53:56.223Z Has data issue: false hasContentIssue false

VARIATION IN FEMALE SOUTHERN PINE BEETLE SIZE AND LIPID CONTENT IN RELATION TO FUNGAL ASSOCIATES

Published online by Cambridge University Press:  31 May 2012

Bryan R. Coppedge
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701
Frederick M. Stephen
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701
Gary W. Felton
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, USA 72701

Abstract

Female southern pine beetles, Dendroctonus frontalis Zimmermann, may propagate two species of symbiotic fungi in a prothoracic mycangium. Females can carry either Ceratocystiopsis ranaculosus Bridges and Perry or an unnamed basidiomycete or both; some carry no fungi. Thus, females can be categorized into one of four groups based on mycangial content. We examined size and lipid content of emerging brood adult females based on these mycangial fungal classes. Female beetles carrying the basidiomycete, either alone or in combination with C. ranaculosus, were larger, heavier, and contained more lipid than did females carrying only C. ranaculosus. Size and lipid content also varied by season, as did the number of females carrying different fungal combinations. Regression analysis showed that variation in the occurrence of the basidiomycete was significantly related to variation in averages of beetle size and lipid content measurements.

Résumé

Les femelles du Dendroctone méridional du pin, Dendroctonus frontalis Zimmermann, peuvent transmettre deux espèces de champignons symbiontes dans un mycangium prothoracique. Les femelles peuvent être porteuses de Ceratocystiopsis ranaculosus Bridges et Perry ou d’un basidiomycète encore sans nom, ou peuvent porter les deux; certaines ne portent aucun champignon. Les femelles peuvent donc être assignées à l’une ou l’autre de quatre classes selon le contenu du mycangium. Nous avons étudié la taille et le contenu lipidique de femelles adultes à l’émergence en fonction de leur appartenance à l’une de ces classes. Les femelles porteuses du basidiomycète, seul ou combiné à C. ranaculosus, se sont avérées plus grosses, plus lourdes et plus riches en lipides que les femelles porteuses de C. ranaculosus seul. La taille et le contenu lipidique des femelles variaient en fonction de la saison et le nombre de femelles porteuses d’infections fongiques variait aussi selon la saison. Une analyse de régression a démontré que la variation dans la présence du basidiomycète était en corrélation significative avec la variation des valeurs moyennes de la taille et du contenu lipidique des coléoptères.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1972. Some factors affecting oviposition behavior of the mountain pine beetle. Environmental Entomology 1: 691695.CrossRefGoogle Scholar
Amman, G.D., and Pace, V.E.. 1976. Optimum Egg Gallery Densities for the Mountain Pine Beetle in Relation to Lodgepole Pine Phloem Thickness. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Note INT–209: 8 pp.Google Scholar
Atkins, M.D. 1969. Lipid loss with flight in the Douglas-fir beetle. The Canadian Entomologist 101: 164165.CrossRefGoogle Scholar
Atkins, M.D. 1975. On factors affecting the size, fat content and behavior of a scolytid. Zeitschrift fur angewandte Entomologie 78: 209218.CrossRefGoogle Scholar
Baker, J.M., and Norris, D.M.. 1968. A complex of fungi mutualistically involved in the nutrition of the ambrosia beetle Xyleborus ferrugineus. Journal of Invertebrate Pathology 11: 246250.CrossRefGoogle Scholar
Barras, S.J. 1973. Reduction of progeny and development in the southern pine beetle following removal of symbiotic fungi. The Canadian Entomologist 105: 12951299.CrossRefGoogle Scholar
Barras, S.J. 1975. Release of fungi from mycangia of southern pine beetles observed under a scanning electron microscope. Zeitschrift fur angewandte Entomologie 79: 173176.CrossRefGoogle Scholar
Barras, S.J., and Hodges, J.D.. 1969. Carbohydrates of inner bark of Pinus taeda as affected by Dendroctonus frontalis and associated microorganisms. The Canadian Entomologist 101: 489493.CrossRefGoogle Scholar
Barras, S.J., and Hodges, J.D.. 1974. Weight, moisture, and lipid changes during life cycle of the southern pine beetle. USDA Forest Service, Southern Forest Experiment Station, Research Note SO–178: 5 pp.Google Scholar
Barras, S.J., and Perry, T.. 1972. Fungal symbionts in the prothoracic mycangium of Dendroctonus frontalis (Coleopt.: Scolytidae). Zeitschrift fur angewandte Entomologie 71: 95104.CrossRefGoogle Scholar
Barras, S.J., and Taylor, J.J.. 1973. Varietal Ceratocystis minor identified from mycangium of Dendroctonus frontalis. Mycologia 50: 293305.Google Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle fungus associations. BioScience 22: 589602.CrossRefGoogle Scholar
Bramble, W.C. and Holst, E.C.. 1940. Fungi associated with Dendroctonus frontalis in killing shortleaf pines and their effect on conduction. Phytopathology 30: 881899.Google Scholar
Bridges, J.R. 1983. Mycangial fungi of Dendroctonus frontalis (Coleoptera: Scolytidae) and their relationship to beetle population trends. Environmental Entomology 12: 858861.CrossRefGoogle Scholar
Bridges, J.R., and Moser, J.C.. 1983. Role of two phoretic mites in transmission of bluestain fungus, Ceratocystis minor. Ecological Entomology 8: 912.CrossRefGoogle Scholar
Bridges, J.R., and Perry, T.J.. 1985. Effects of mycangial fungi on gallery construction and distribution of bluestain in southern pine beetle-infested pine bolts. Journal of Entomological Science 20: 271275.CrossRefGoogle Scholar
Bridges, J.R., and Perry, T.J.. 1987. Ceratocystiopsis ranaculosus sp. nov. associated with the southern pine beetle. Mycologia 79: 630633.CrossRefGoogle Scholar
Clarke, A.L., Webb, J.W., and Franklin, R.T.. 1979. Fecundity of the southern pine beetle in laboratory pine bolts. Annals of the Entomological Society of America 72: 229231.CrossRefGoogle Scholar
Cooper, M.E., and Stephen, F.M.. 1978. Parent adult reemergence in southern pine beetle populations. Environmental Entomology 7: 574577.CrossRefGoogle Scholar
Coppedge, B.R., Stephen, F.M., and Felton, G.W.. 1994. Variation in size and lipid content of adult southern pine beetles, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae) in relation to season. Journal of Entomological Science 29: 570579.CrossRefGoogle Scholar
Goldhammer, D.S., Stephen, F.M., and Paine, T.D.. 1990. The effect of the fungi Ceratocystis minor (Hedgecock) Hunt, Ceratocystis minor (Hedgecock) Hunt var. barrasii Taylor, and SJB 122 on reproduction of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). The Canadian Entomologist 122: 407418.CrossRefGoogle Scholar
Hagen, B.W., and Atkins, M.D.. 1975. Between generation variability in the fat content and behavior of Ips paraconfusus Lanier. Zeitschrift fur angewandte Entomologie 79: 169172.CrossRefGoogle Scholar
Happ, G.M., Happ, C.M., and Barras, S.J.. 1971. Fine structure of the prothoracic mycangium, a chamber for the culture of symbiotic fungi in the southern pine beetle, Dendroctonus frontalis. Tissue & Cell 3: 295308.CrossRefGoogle ScholarPubMed
Harrington, T.C., and Zambino, P.J.. 1990. Ceratocystiopsis ranaculosus, not Ceratocystis minor var. barrasii, is the mycangial fungus of the southern pine beetle. Mycotaxon 38: 103115.Google Scholar
Hedden, R.L., and Billings, R.F.. 1977. Seasonal variations in fat content and size of the southern pine beetle in east Texas. Annals of the Entomological Society of America 70: 876880.CrossRefGoogle Scholar
Hodges, J.D., Barras, S.J., and Mauldin, J.K.. 1968. Amino acids in inner bark of loblolly pine, as affected by the southern pine beetle and associated microorganisms. Canadian Journal of Botany 46: 14671472.CrossRefGoogle Scholar
Nijholt, W.W., and Sahota, T.S.. 1974. Changes in triglyceride fatty acids during brood production of Douglas-fir beetles (Coleoptera: Scolytidae). The Canadian Entomologist 106: 927932.CrossRefGoogle Scholar
Norris, D.M., Baker, J.M., and Chu, H.M.. 1969. Symbiotic interrelationships between microbes and ambrosia beetles. III. Ergosterol as the source of sterol to the insect. Annals of the Entomological Society of America 62: 413414.CrossRefGoogle Scholar
Paine, T.D., and Birch, M.C.. 1983. Acquisition and maintenance of mycangial fungi by Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Environmental Entomology 12: 13841386.CrossRefGoogle Scholar
Penner, K.R., and Barlow, J.S.. 1972. The composition and metabolism of fatty acids in Ips paraconfusus Lanier (Coleoptera: Scolytidae). Canadian Journal of Zoology 50: 12631267.CrossRefGoogle Scholar
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay region of British Colombia II. Behaviour in the host, fecundity, and internal changes in the female. The Canadian Entomologist 94: 605613.CrossRefGoogle Scholar
Roberts, E.A., Billings, P.M., Payne, T.L., Richerson, J.V., Berisford, C.W., Hedden, R.L., and Edson, L.J.. 1982. Seasonal variation in laboratory response to behavioral chemicals of the southern pine beetle. Journal of Chemical Ecology 8: 641652.CrossRefGoogle ScholarPubMed
Sahota, T.S., Peet, F.G., and Ibaraki, A.. 1987. Manipulations of egg-gallery length to vary brood density in spruce beetle Dendroctonus rufipennis (Coleoptera: Scolytidae): Effects on brood survival and quality. Journal of the Entomological Society of British Columbia 84: 5963.Google Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5. SAS Institute, Cary, NC.Google Scholar
SAS Institute. 1989. SAS/STAT User's Guide, Version 6. SAS Institute, Cary, NC.Google Scholar
Thompson, S.N., and Bennett, R.B.. 1971. Oxidation of fat during flight of male Douglas-fir beetles, Dendroctonus pseudotsugae. Journal of Insect Physiology 17: 15551563.CrossRefGoogle Scholar