Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T17:48:06.376Z Has data issue: false hasContentIssue false

VIRULENCE OF ENTOMOPATHOGENIC NEMATODE–BACTERIA COMPLEXES FOR LARVAE OF NOCTUIDS, A GEOMETRID, AND A PYRALID1

Published online by Cambridge University Press:  31 May 2012

O.N. Morris
Affiliation:
Agriculture Canada Research Station, Winnipeg, Manitoba, Canada R3T 2M9
V. Converse
Affiliation:
Agriculture Canada Research Station, Winnipeg, Manitoba, Canada R3T 2M9
J. Harding
Affiliation:
Agriculture Canada Research Station, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Nine entomopathogenic nematode–bacteria complexes were screened for their virulence against larvae of six noctuids, a geometrid, and a pyralid. Ninety-six-hour LD50’s of steinernematids (and heterorhabditids) ranged from 1 to 3 (1–8) infective juveniles in Galleria mellonella (L.), 1–71 (2) in Peridroma soucia (Hbn.), 1–10 (1–3) in Mamestra configurata (Wlk.), 1–28 (3–7) in Euxoa ochrogaster (Gn.), 19 in Lacanobia radix (Wlk.), 22–60 (4) in Pseudaletia unipuncta (Haw.), 2–95 (111) in Agrotis ipsilon (Hufn.), and 3–28 in Paleacrita vernata (Peck). The nematode, Steinernema feltiae LIC, a cold-hardy strain isolated in Newfoundland, was highly virulent for G. mellonella and M. configurata, but not for P. soucia and E. ochrogaster. The number of nematodes invading larvae and the number produced were greater in G. mellonella than in other insects tested. Nematode–bacteria complexes that showed potential for controlling cutworms included S. feltiae, S. glaseri, S. bibionis, Heterorhabditis bacteriophora, and H. heliothidis.

Résumé

Neuf complexes nématodes–bactéries entomopathogènes ont été examinés pour leur virulence envers les larves de six noctuelles, un géomètre et une pyrale. Des LD50 pour 96 h d’exposition aux steinernematidae (et aux heterorhabdidae) ont varié entre 1 et 3 (1 et 8) juvéniles infectueux chez Galleria mellonella (L.), 1 et 71 (2) chez Peridroma saucia (Hbn.), 1 et 10 (1 et 3) chez Mamestra configurata (Wlk.), 1 et 28 (3 et 7) chez Euxoa ochrogaster (Gn.), 19 chez Lacanobia radix (Wlk.), 22 et 60 (4) chez Pseudaletia unipuncta (Haw.), 2 et 95 (111) chez Agrotis ipsilon (Hufn.) et 3 et 28 chez Paleacrita vernata (Peck). Le nematode, Steinernema feltiae LIC, une souche tolérante au froid isolée à Terre-Neuve, a été hautement virulente pour G. mellonella et M. configurata, mais pas pour P. saucia et E. ochrogaster. Le nombre de nématodes infestant les larves et le nombre produits étaient plus élevés chez G. mellonella que chez les autres espèces testées. Les complexes nématodes–bactéries qui ont présenté un potentiel pour le contrôle des ver-gris sont S. feltiae, S. glaseri, S. bibionis, Heterorhabditis bacteriophora et H. heliothidis.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhurst, R.J. 1983. Neoaplectana species. Specificity of association with bacteria of the genus Xenorhabdus. Exp. Parasitol. 55: 258263.CrossRefGoogle ScholarPubMed
Beavers, J.B., and Calkins, C.O.. 1984. Susceptibility of Anastrepha suspensa (Diptera: Tephritidae) to steinernematid and heterorhabditid nematodes in laboratory studies. Environ. Ent. 13: 137139.CrossRefGoogle Scholar
Bedding, R.A., and Miller, L.A.. 1981. Disinfesting blackcurrant cuttings of Synathedon tipuliformis using the insect parasitic nematode Neoaplectana bibionis. Environ. Ent. 10: 449453.CrossRefGoogle Scholar
Bucher, G.E., and Bracken, G.K.. 1976. The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Artificial diet and rearing technique. Can. Ent. 108: 13271388.CrossRefGoogle Scholar
Creighton, C.S., and Fassuliotis, G.. 1985. Heterorhabditis sp. (Nematoda: Heterorhabditidae): a nematode parasite isolated from the banded cucumber beetle Diabrotica balteata. J. Nematol. 17: 150153.Google ScholarPubMed
Dunphy, G.B., Rutherford, T.A., and Webster, J.M.. 1985. Growth and virulence of Steinernema glaseri influenced by different subspecies of Xenorhabdus nematophilus J. Nematol. 17: 476482.Google ScholarPubMed
Dutky, S.R., Thompson, J.V., and Cantwell, G.E.. 1962. A technique for mass rearing of the greater wax moth (Galleria mellonella) (Lepidoptera: Galleridae). Proc. ent. Soc. Wash. 64: 5658.Google Scholar
Dutky, S.R., Thompson, J.V., and Cantwell, G.E.. 1964. A technique for mass propagation of the DD-136 nematode. J. Insect Pathol. 6: 417422.Google Scholar
Finney, J.R. 1973. The physiological interactions between a nematode parasite and its insect hosts. Parasitology 67: 1.Google Scholar
Fuxa, J.R., and Richter, A.R.. 1988. Effect of host age and nematode strain on susceptibility of Spodoptera frugiperda to Steinernema feltiae. J. Nematol. 20: 9195.Google ScholarPubMed
Geden, C.J., Axtell, R.C., and Brooks, W.A.. 1985. Susceptibility of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae) to the entomogenous nematodes Steinernema feltiae, S. glaseri (Steinernematidae) and Heterorhabditis heliothidis (Heterorhabditidae). J. ent. Sci. 20: 331339.Google Scholar
Griffin, C.T., Simons, W.R., and Smits, P.H.. 1989. Activity and infectivity of four isolates of Heterorhabditis spp. J. Invert. Pathol. 53: 107112.CrossRefGoogle Scholar
Kashio, T. 1982. Laboratory evaluation of entomogenous nematodes, Neoaplectana carpocapsae Weiser, a biological control agent of the whitespotted longicorn beetle, Anaplophora malasiaca Thompson. Proc. Assoc. Plant Prot. Kyushu 28: 194197.CrossRefGoogle Scholar
Kaya, H.K. 1985. Susceptibility of early larval stages of Pseudaletia unipuncta and Spodoptera exigua (Lepidoptera: Noctuidae) to the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae). J. Invert. Pathol. 46: 5862.CrossRefGoogle Scholar
Kaya, H.K., and Hara, A.H.. 1980. Differential susceptibility of lepidopterous pupae to infection by the nematode Neoaplectana carpocapsae. J. Invert. Pathol. 36: 389393.CrossRefGoogle Scholar
Kaya, H.K., and Hara, A.H.. 1981. Susceptibility of various species of lepidopterous pupae to the entomogenous nematode Neoaplectana carpocapsae. J. Nematol. 13: 291294.Google Scholar
Kondo, E., and Ishibashi, N.. 1986. Infectivity and propagation of entomogenous nematodes, Steinernema spp. on the common cutworm, Spodoptera litura (Lepidoptera:Noctuidae). Appl. Ent. Zool. 21: 95108.CrossRefGoogle Scholar
Laumond, C., Mauleon, H., and Kermarrec, A.. 1979. Données nouvelles sur le spectre d'hotes et le parasitisme du nematode entomophage Neoaplectana carpocapsae. Entomophaga 24: 1327.CrossRefGoogle Scholar
Litchfield, J.T., and Wilcoxon, F.. 1949. A simplified method of evaluating dose–effect experiments. J. Pharm. Exp. Therapeutics 96: 99103.Google ScholarPubMed
Molyneux, A.S., Bedding, R.A., and Akhurst, R.J.. 1983. Susceptibility of larvae of the sheep blowfly Lucilia cuprina to various Heterorhabditis spp., Neoaplectana spp., and an undescribed steinemematid (Nematoda). J. Invert. Pathol. 42: 17.CrossRefGoogle Scholar
Morris, O.N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can. Ent. 117: 401407.CrossRefGoogle Scholar
Mullens, B.A., Meyer, J.A., and Cyr, T.L.. 1987. Infectivity of insect-parasitic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) for larvae of some manure-breeding flies (Diptera: Muscidae). Environ. Ent. 16: 769773.CrossRefGoogle Scholar
Poinar, G.O. Jr., 1971. Use of nematodes for microbial control of insects. pp. 181203in Burges, H.D., and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York.Google Scholar
Poinar, G.O. Jr., 1979. Nematodes for Biological Control of Insects. CRC Press. 317 pp.Google Scholar
Poinar, G.O. Jr., and Thomas, G.. 1967. The nature of Achromobacter nematophilus as an insect pathogen. J. Invert. Pathol. 9: 510514.CrossRefGoogle Scholar
Sandner, H., and Pezowicz, E.. 1986. Influence of the Steinernema feltiae (Filipjev) and Heterorhabditis bacteriophora Poinar invasive larvae on the Barathra brassicae L. caterpillars and on their feeding. Ann. Warsaw Agr. Univ. — SGGW-AR. Animal Sci. No. 20 pp. 4956.Google Scholar
Shapiro, M., Poinar, G.O. Jr., and Lindegren, J.E.. 1985. Susceptibility of Lymantria dispar (Lepidoptera: Lymantridae) as a host for the entomogenous nematode Steinernema feltiae (Rhabditida: Steinemematidae). J. econ. Ent. 78: 342345.CrossRefGoogle Scholar