Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:58:45.101Z Has data issue: false hasContentIssue false

VISUAL STIMULI INFLUENCING ORIENTATION BY LARVAL GYPSY MOTH, LYMANTRIA DISPAR (L.)

Published online by Cambridge University Press:  31 May 2012

D.B. Roden
Affiliation:
Forestry Canada, Ontario Region, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada P6A 5M7
J.R. Miller
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA48824
G.A. Simmons
Affiliation:
Department of Entomology, Michigan State University, East Lansing, Michigan, USA48824

Abstract

In laboratory and field experiments involving artificial and real tree trunks, all larval instars of gypsy moth [Lymantria dispar (L.)] crawling on a horizontal surface were influenced by the diameter, height, and species of a tree. For most larval instars, black artificial tree trunks were preferred to white trunks. The influence of the diameter and height of a host on larval attraction was examined with cardboard columns. The degree of larval attraction to a column of a certain diameter and height was positively correlated with the angle at which the column was presented. Significantly more larvae were attracted to bolts of red oak (Quercus rubra L.) than to white birch (Betula papyrifera Marsh.) or trembling aspen (Populus tremuloides Michx.). The implications of these findings and their possible effects on host colonization are discussed.

Résumé

Lors d’essais en laboratoire et sur le terrain à l’aide de troncs d’arbres artificiels et naturels, tous les stades larvaires de la spongieuse [Lymantria dispar (L.)] rampant sur une surface horizontale ont été influencés par le diamètre, la hauteur et l’essence de l’arbre. La plupart des stades larvaires ont préféré des troncs d’arbres artificiels noirs à des troncs blancs. L’influence du diamètre et de la hauteur d’un hôte sur l’attraction des larves a été étudiée à l’aide de colonnes de carton. Le degré d’attraction des larves vers une colonne d’un diamètre et d’une hauteur donnés était conélé positivement à l’angle auquel la colonne était installée. Beaucoup plus de larves étaient attirées par des fûts de chêne rouge (Quercus rubra L.) que de bouleau à papier (Betula papyrifera Marsh.) ou de peuplier faux-tremble (Populus tremuloides Michx.). L’article examine les incidences de ces constatations et leurs effets possibles sur la colonisation des hôtes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbosa, P. 1978. Host plant exploitation by the gypsy moth, Lymantria dispar. Entomologia exp. appl. 24: 2837.CrossRefGoogle Scholar
Barbosa, P., and Greenblatt, J.. 1979. Suitability, digestibility and assimilation of various host plants of the gypsy moth, Lymantria dispar (L.). Oecologia 43: 111119.CrossRefGoogle ScholarPubMed
Beck, S.D. 1965. Resistance of plants to insects. A. Rev. Ent. 10: 207232.CrossRefGoogle Scholar
Bell, R.A., Owens, C.D., Shapiro, M., and Tardif, J.R.. 1981. Mass rearing and virus production. p. 608in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Washington, DC, Tech. Bull. 1584. 757 pp.Google Scholar
Cain, M.L., Eccleston, J., and Karevia, P.M.. 1983. The influence of food plant dispersion on caterpillar searching success. Ecol. Ent. 10: 17.CrossRefGoogle Scholar
Campbell, R.W., Hubbard, D.L., and Sloan, R.J.. 1975 a. Patterns of gypsy moth occurrence within a sparse and numerically stable population. Environ. Ent. 4: 535542.CrossRefGoogle Scholar
Campbell, R.W., Hubbard, D.L., and Sloan, R.J.. 1975 b. Locations of gypsy moth pupae survival in sparse, stable populations. Environ. Ent. 4: 597600.CrossRefGoogle Scholar
Campbell, R.W., and Sloan, R.J.. 1976. Influences of behavioral evolution of gypsy moth pupal survival in sparse populations. Environ. Ent. 5: 12111217.CrossRefGoogle Scholar
Conover, W.J., and Iman, R.L.. 1981. Rank transformation as a bridge between parametric and nonparametric statistics. Am. Stat. 35: 124133.CrossRefGoogle Scholar
Dethier, V.G. 1971. A surfeit of stimuli: A paucity of receptors. Am. Sci. 59: 706715.Google Scholar
Dethier, V.G. 1982. Mechanism of host-plant recognition. Entomologia exp. appl. 31: 4956.CrossRefGoogle Scholar
Dethier, V.G. 1987. The feeding behavior of a polyphagus caterpillar (Diacrisia virginica) in its natural habitat. Can. J. Zool. 66: 12801288.CrossRefGoogle Scholar
Dethier, V.G. 1989. Patterns of locomotion of polyphagous arctiid caterpillars in relation to foraging. Ecol. Ent. 14: 375386.CrossRefGoogle Scholar
Doane, C.C., and Leonard, D.E.. 1975. Orientation and dispersal of late-stage larvae of Porthetria dispar (Lepidoptera: Lymantriidae). Can. Ent. 107: 13331338.CrossRefGoogle Scholar
Duncan, D.B. 1975. t Tests and intervals for comparison suggested by the data. Biometrics 31: 330359.CrossRefGoogle Scholar
Fitzgerald, T.D., and Peterson, S.C.. 1988. Cooperative foraging and communication in caterpillars. Bioscience 38: 2025.CrossRefGoogle Scholar
Hough, J.A., and Pimentel, D.. 1978. Influences of host foliage on development, survival and fecundity of the gypsy moth. J. econ. Ent. 63: 14541457.Google Scholar
Hundertmark, A. 1937 a. Helligkietis- und Farbenunterscheidungsvermögen der Eiraupen der Nonne (Lymantria monacha L.). Z. vergl. Physiol. 24: 4257.CrossRefGoogle Scholar
Hundertmark, A. 1937 b. Das Formenunterscheidungsvermögen der Eiraupen der Nonne (Lymantria monacha L.). Z. vergl. Physiol. 24: 563582.CrossRefGoogle Scholar
Ichikawa, T., and Tateda, H.. 1982. Receptive field of the stemmata in the swallowtail butterfly Papilio. J. Comp. Physiol. A 146: 191199.CrossRefGoogle Scholar
Keating, S.T., and Yendol, W.G.. 1987. Influence of selected host plants on gypsy moth (Lepidoptera: Lymantriidae) larval mortality caused by a baculovirus. Environ. Ent. 16: 459462.CrossRefGoogle Scholar
Knapp, R., and Casey, T.M.. 1986. Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars. Ecology 67: 598608.CrossRefGoogle Scholar
Lance, D. 1983. Host-seeking behavior of the gypsy moth: The influence of polyphagy and highly apparent host plants. p. 208 in Ahmad, S. (Ed.), Herbivorous Insects: Host-seeking Behavior and Mechanisms. Academic Press, New York, NY. 257 pp.Google Scholar
Lance, D., and Barbosa, P.. 1982. Host tree influences on the dispersal of late instar gypsy moths, Lymantria dispar. Oikos 38: 17.CrossRefGoogle Scholar
Lance, D.R., Elkinton, J.S., and Schwalbe, C.P.. 1986. Feeding rhythms of gypsy moth larvae: Effects of food quality during outbreaks. Ecology 67: 16501654.CrossRefGoogle Scholar
Leonard, D.E. 1967. Silking behavior of the gypsy moth, Porthetria dispar. Can. Ent. 99: 11451149.CrossRefGoogle Scholar
Leonard, D.E. 1981. Bioecology of the gypsy moth. pp. 9–29 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Washington, DC, Tech. Bull. 1584. 757 pp.Google Scholar
Liebhold, A.M., Elkinton, J.S., and Wallner, W.E.. 1986. Effect of burlap bands on between-tree movement of late-instar gypsy moth, Lymantria dispar (Lepidoptera; Lymantriidae). Environ. Ent. 14: 373379.CrossRefGoogle Scholar
Mason, C.J., and McManus, M.L.. 1981. Larval dispersal of the gypsy moth. p. 199in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Towards Integrated Pest Management. USDA For. Serv., Washington, DC, Tech. Bull. 1584. 757 pp.Google Scholar
McManus, M.L. 1973. The role of behavior in the dispersal of newly hatched gypsy moth larvae. USDA For. Serv., Northeastern For. Exp. Stn., Hamden, CT, Res. Pap. NE-267. 10 pp.Google Scholar
Meyer, G.A., and Montgomery, M.E.. 1987. Relationship between leaf age and the food quality of cottonwood foliage for the gypsy moth, Lymantria dispar. Oecologia 72: 527532.CrossRefGoogle ScholarPubMed
Miller, J.R., and Harris, M.O.. 1985. Viewing behavior-modifying chemicals in the context of behavior: Lessons from the onion fly. pp. 166–168 in Acree, T.E., and Soderlund, D.M. (Eds.), Semiochemistry: Flavors and Pheromones. Walter de Gruyter and Co., New York, NY. 289 pp.Google Scholar
Miller, J.R., and Strickler, K.L.. 1984. Finding and accepting host plants. pp. 127–157 in Bell, W.J., and Cardé, R.T. (Eds.), Chemical Ecology of Insects. Sinauer Associates Inc., Sunderland, MA. 524 pp.Google Scholar
Moericke, R.J., Prokopy, J., Berlocher, S., and Bush, G.L.. 1975. Visual stimuli eliciting attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to trees. Entomologia exp. appl. 18: 497507.CrossRefGoogle Scholar
Perkel, D.H., and Bullock, T.H.. 1968. Neural coding. Neurosciences Res. Program Bull. 6: 221348.Google Scholar
Roden, D.B., Kimball, J.C., and Simmons, G.A.. 1990. A laboratory technique to study a change in the feeding behavior of the gypsy moth, Lymantria dispar (L.). Can. Ent. 122: 617625.CrossRefGoogle Scholar
Rossiter, M.C., and Schultz, J.C.. 1988. Relationships among defoliation, red oak phenolics and gypsy moth growth and reproduction. Ecology 69: 267277.CrossRefGoogle Scholar
Saxena, K.N., and Khattar, P.. 1977. Orientation of Papilio demoleus larvae in relation to size, distance, and combination pattern of visual stimuli. J. Insect Physiol. 23: 14211428.CrossRefGoogle Scholar
Schultz, J.C. 1985. Habitat selection and foraging tactics of caterpillars in heterogeneous trees. p. 62in Denno, R.F., and McClure, M.S. (Eds.), Variables Plants and Herbivores in Natural and Managed Systems. Academic Press, New York, NY. 717 pp.Google Scholar
Scriber, J.M. 1977. Limiting effects of low leaf-water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 23: 269287.CrossRefGoogle Scholar
Shapiro, M. 1977. Gypsy moth mass rearing: Evolution of methods for surface sterilization of eggs and/or pupae laboratory report (October 1976 – March 1977). USDA Anim. Plant Health Insp. Serv., Otis AFB, MA.Google Scholar
Shorey, H.H. 1977. Introduction. p. 1 in Shorey, H.H., and McKelvey, J.J. (Eds.), Chemical Control of Insect Behavior. John Wiley and Sons, New York, NY. 414 pp.Google Scholar
Sullivan, C.R., and Wallace, D.R.. 1972. The potential northern distribution of the gypsy moth, Porthetria dispar (Lepidoptera: Lymantriidae). Can. Ent. 104: 13491355.CrossRefGoogle Scholar
Thornsteinson, A.J. 1960. Host selection in phytophagous insects. A. Rev. Ent. 5: 193218.CrossRefGoogle Scholar
Waller, R.A., and Duncan, D.B.. 1969. A Bayes rule for the symmetric multiple comparisons problem. J. Am. Statist. Assoc. 64: 14841503.Google Scholar
Wellington, W.G. 1948. The light reactions of spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). Can. Ent. 130: 5682.CrossRefGoogle Scholar
Weseloh, R.M. 1989. Behavioral responses of gypsy moth (Lepidoptera: Lymantriidae) larvae to abiotic environmental factors. Environ. Ent. 18: 361367.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. 718 pp.Google Scholar