Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:44:24.519Z Has data issue: false hasContentIssue false

Adrenal inhibition following a single dose of etomidate in intubated traumatic brain injury victims

Published online by Cambridge University Press:  11 May 2015

Patrick Archambault*
Affiliation:
Departments of Emergency Medicine and Anesthesiology, Centre de santé et de services sociaux Alphonse-Desjardins (Centre Hospitalier Affilié Universitaire de Lévis), Lévis, QC Traumatologie – urgence – soins intensifs, Centre de recherche FRSQ du CHA universitaire de Québec, Québec City, QC
Clermont E. Dionne
Affiliation:
URESP, Centre de recherche FRSQ du CHA universitaire de Québec, Québec City, QC
Gilles Lortie
Affiliation:
Département de médecine familiale et de médecine d'urgence, Université Laval, Québec City, QC Department of Emergency Medicine, Centre de santé et de services sociaux Alphonse-Desjardins (Centre Hospitalier Affilié Universitaire Hôtel-Dieu de Lévis), Lévis, QC
François LeBlanc
Affiliation:
Department of Medicine and Division of Critical Care, CHA universitaire de Québec (Hôpital de l'Enfant-Jésus), Québec City, QC
Anik Rioux
Affiliation:
Department of Pharmacy, Hôpital de Gatineau, Gatineau, QC
Geneviève Larouche
Affiliation:
Department of Pharmacy, Centre Hospitalier Universitaire de Québec, Québec City, QC
*
CSSS Alphonse-Desjardins (CHAU de Lévis), 143, rue Wolfe, Lévis, Quebec, QC G6V 3Z1; patrick.m.archambault@gmail.com.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Etomidate is frequently used to intubate traumatic brain injury (TBI) victims, even though it has been linked to adrenal insufficiency (AI) in some populations. Few studies have explored the risk of prolonged etomidateinduced AI among TBI victims.

Objective:

To determine the risk and the length of AI induced by etomidate in patients intubated for moderate and severe TBI.

Methods:

Participants in this observational study were moderate to severe intubated TBI victims aged ≥ 16 years. The anesthetic used (etomidate versus others) was determined solely by the treating emergency physician. Adrenocorticotropic hormone (ACTH) stimulation tests (250 µg) were performed 24, 48, and 168 hours after intubation. AI was defined as an increase in serumcortisol 1 hour post–ACTH test (delta cortisol) of less than 248.4 nmol/L.

Results:

Forty subjects (participation 42.6%) underwent ACTH testing. Fifteen received etomidate, and 25 received another anesthetic. There were no statistically significant differences between groups as to the cumulative incidence of AI at any measurement time. However, at 24 hours, exploratory post hoc analyses showed a significant decrease in delta cortisol (adjusted means: etomidate group: 305.1 nmol/L, 95% CI 214.7–384.8 versus other anesthetics: 500.5 nmol/L, 95% CI 441.8–565.7). This decrease was not present at 48 and 168 hours.

Conclusion:

In TBI victims, although a single dose of etomidate does not increase the cumulative incidence of AI as defined, it seems to decrease the adrenal response to an ACTH test for 24 hours. The clinical impacts of this finding remain to be determined.

Type
Original Research • Recherche originale
Copyright
Copyright © Canadian Association of Emergency Physicians 2012

References

REFERENCES

1.Bergen, JM, Smith, DC. A review of etomidate for rapid sequence intubation in the emergency department. J Emerg Med 1997;15:221–30, doi:10.1016/S0736-4679(96)00350-2.CrossRefGoogle ScholarPubMed
2.Sagarin, MJ, Barton, ED, Chng, YM, et al. Airway management by US and Canadian emergency medicine residents: a multicenter analysis of more than 6,000 endotracheal intubation attempts. Ann Emerg Med 2005;46:328–36, doi:10.1016/j.annemergmed.2005.01.009.CrossRefGoogle Scholar
3.Sakles, JC, Laurin, EG, Rantapaa, AA, et al. Airway management in the emergency department: a one-year study of 610 tracheal intubations. Ann Emerg Med 1998;31:325–32, doi:10.1016/S0196-0644(98)70342-7.CrossRefGoogle ScholarPubMed
4.Walls, RM. Manual of emergency airway management. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2004.Google Scholar
5.Marx, JA, Hockberger, RS, Walls, RM, et al. Rosen’s emergency medicine: concepts and clinical practice. 6th ed. Philadelphia: Mosby/Elsevier; 2006.Google Scholar
6.Allolio, B, Dཥrr, H, Stuttmann, R, et al. Effect of a single bolus of etomidate upon eight major corticosteroid hormones and plasma ACTH. Clin Endocrinol (Oxf) 1985;22:281–6, doi:10.1111/j.1365-2265.1985.tb03241.x.Google Scholar
7.Wagner, RL, White, PF. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology 1984;61:647–51, doi:10.1097/00000542-198412000-00003.Google Scholar
8.Fragen, RJ, Shanks, CA, Molteni, A, et al. Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 1984; 61:652–6, doi:10.1097/00000542-198412000-00004.Google Scholar
9.Duthie, DJ, Fraser, R, Nimmo, WS. Effect of induction of anaesthesia with etomidate on corticosteroid synthesis in man. Br J Anaesth 1985;57:156–9, doi:10.1093/bja/57.2.156.Google Scholar
10.Crozier, TA, Beck, D, Schlaeger, M, et al. Endocrinological changes following etomidate, midazolam, or methohexital for minor surgery. Anesthesiology 1987;66:628–35, doi:10.1097/00000542-198705000-00006.CrossRefGoogle ScholarPubMed
11.Absalom, A, Pledger, D, Kong, A. Adrenocortical function in critically ill patients 24 h after a single dose of etomidate. Anaesthesia 1999;54:861–7, doi:10.1046/j.1365-2044.1999.01003.x.CrossRefGoogle ScholarPubMed
12.Schenarts, CL, Burton, JH, Riker, RR. Adrenocortical dysfunction following etomidate induction in emergency department patients. Acad Emerg Med 2001;8:17, doi:10.1111/j.1553-2712.2001.tb00537.x.CrossRefGoogle ScholarPubMed
13.Vinclair, M, Broux, C, Faure, P, et al. Duration of adrenal inhibition following a single dose of etomidate in critically ill patients. Intensive Care Med 2008;34:714–9, doi:10.1007/s00134-007-0970-y.CrossRefGoogle ScholarPubMed
14.Bloomfield, R, Noble, DW. Etomidate and fatal outcome—even a single bolus dose may be detrimental for some patients. Br J Anaesth 2006;97:116–7, doi:10.1093/bja/ael124.CrossRefGoogle ScholarPubMed
15.Annane, D. ICU physicians should abandon the use of etomidate! Intensive Care Med 2005;31:325–6, doi:10.1007/s00134-005-2560-1.Google Scholar
16.Morris, C, McAllister, C. Etomidate for emergency anaesthesia; mad, bad and dangerous to know? Anaesthesia 2005;60:737–40, doi:10.1111/j.1365-2044.2005.04325.x.CrossRefGoogle ScholarPubMed
17.Jackson, WL Jr. Shouldwe use etomidate as an induction agent for endotracheal intubation in patients with septic shock? A critical appraisal. Chest 2005;127:1031–8, doi:10.1378/chest.127.3.1031.CrossRefGoogle Scholar
18.Hildreth, AN, Mejia, VA, Maxwell, RA, et al. Adrenal suppression following a single dose of etomidate for rapid sequence induction: a prospective randomized study. J Trauma 2008;65:573–9, doi:10.1097/TA.0b013e31818255e8.Google Scholar
19.Jabre, P, Combes, X, Lapostolle F, et al. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet 2009;374:293300, doi:10.1016/S0140-6736(09)60949-1.CrossRefGoogle Scholar
20.Hohl, CM, Kelly-Smith, CH, Yeung, TC, et al. The effect of a bolus dose of etomidate on cortisol levels, mortality, and health services utilization: a systematic review. Ann Emerg Med 2010;56:105–13 e5.CrossRefGoogle ScholarPubMed
21.Bruns, J Jr, Hauser, WA. The epidemiology of traumatic brain injury: a review. Epilepsia 2003;44 Suppl 10:2–10, doi:10.1046/j.1528-1157.44.s10.3.x.CrossRefGoogle ScholarPubMed
22.Fleminger, S, Ponsford, J. Long term outcome after traumatic brain injury. BMJ 2005;331:1419–20, doi:10.1136/bmj.331.7530.1419.CrossRefGoogle ScholarPubMed
23.Agha, A, Phillips, J, Thompson, CJ. Hypopituitarism following traumatic brain injury (TBI). Br J Neurosurg 2007;21:210–6, doi: 10.1080/02688690701253331.CrossRefGoogle ScholarPubMed
24.Dimopoulou, I, Tsagarakis, S, Kouyialis, AT, et al. Hypothalamic-pituitary-adrenal axis dysfunction in critically ill patients with traumatic brain injury: incidence, pathophysiology, and relationship to vasopressor dependence and peripheral interleukin-6 levels. Crit Care Med 2004;32:404–8, doi:10.1097/01.CCM.0000108885.37811.CA.Google Scholar
25.Tanriverdi, F, Senyurek, H, Unluhizarci, K, et al. High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab 2006;91:2105–11, doi:10.1210/jc.2005-2476.Google Scholar
26.Cohan, P, Wang, C, McArthur, DL, et al. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 2005;33:2358–66, doi:10.1097/01.CCM.0000181735.51183.A7.CrossRefGoogle ScholarPubMed
27.Cooper, MS, Stewart, PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med 2003;348:727–34, doi:10.1056/NEJMra020529.CrossRefGoogle ScholarPubMed
28.Edwards, P, Arango, M, Balica, L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury—outcomes at 6 months. Lancet 2005;365:1957–9, doi:10.1016/S0140-6736(05)66552-X.Google Scholar
29.Roberts, I, Yates, D, Sandercock, P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 2004;364:1321–8, doi:10.1016/S0140-6736(04)17188-2.Google ScholarPubMed
30.SanoFi Diagnostics Pasteur. Access immunoassay system manual of operation. SanoFi Pasteur Diagnostics; 1995.Google Scholar
31.Annane, D, Sebille, V, Charpentier, C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002;288:862–71, doi:10.1001/jama.288.7.862.Google Scholar
32.Marik, PE. Critical illness-related corticosteroid insufficiency. Chest 2009;135:181–93, doi:10.1378/chest.08-1149.CrossRefGoogle ScholarPubMed
33.Annane, D, Sebille, V, Troche, G, et al. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000;283:1038–45, doi:10.1001/jama.283.8.1038.Google Scholar
34.Weant, KA, Sasaki-Adams, D, Dziedzic, K, et al. Acute relative adrenal insufficiency after aneurysmal subarachnoid hemorrhage. Neurosurgery 2008;63:645–50, doi:10.1227/01.NEU.0000325728.S0939.15.Google Scholar
35.Price, KA, Allen, U, Mandersloot, G, et al. Effect of a single dose of etomidate on adrenal function in patients with trauma. Crit Care 2005;9 Suppl 1:P392, doi:10.1186/cc3455.Google Scholar
36.Bernard, F, Outtrim, J, Menon, DK, et al. Incidence of adrenal insufficiency after severe traumatic brain injury varies according to definition used: clinical implications. Br J Anaesth 2006;96:72–6, doi:10.1093/bja/aei277.Google Scholar
37.Hoen, S, Asehnoune, K, Brailly-Tabard, S, et al. Cortisol response to corticotropin stimulation in trauma patients: influence of hemorrhagic shock. Anesthesiology 2002;97:807–13, doi:10.1097/00000542-200210000-00010.Google Scholar
38.McCarney, R, Warner, J, Iliffe, S, et al. The Hawthorne effect: a randomised, controlled trial. BMC Med Res Methodol 2007;7:30, doi:10.1186/1471-2288-7-30.Google Scholar
39.Himmelseher, S, Durieux, ME. Revising a dogma: ketamine for patients with neurological injury? Anesth Analg 2005;101:524–34, doi:10.1213/01.ANE.0000160585.43587.5B.Google Scholar
40.Sehdev, RS, Symmons, DA, Kindl, K. Ketamine for rapid sequence induction in patients with head injury in the emergency department. Emerg Med Australas 2006;18:3744, doi:10.1111/j.1742-6723.2006.00802.x.CrossRefGoogle ScholarPubMed
41.Payen, JF, Dupuis, C, Trouve-Buisson, T, et al. Corticosteroid after etomidate in critically ill patients: a randomized controlled trial. Crit Care Med 2012;40:2935, doi:10.1097/CCM.0b013e31822d7938.CrossRefGoogle ScholarPubMed
42.Roquilly, A, Mahe, PJ, Seguin, P, et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA 2011;305:1201–9, doi:10.1001/jama.2011.360.Google Scholar