Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T06:50:49.187Z Has data issue: false hasContentIssue false

Developing emergency department physician shift schedules optimized to meet patient demand

Published online by Cambridge University Press:  11 February 2015

David W. Savage*
Affiliation:
Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON
Douglas G. Woolford
Affiliation:
Department of Mathematics, Wilfrid Laurier University, Waterloo, ON
Bruce Weaver
Affiliation:
Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON
David Wood
Affiliation:
Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON Emergency Department, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON
*
Correspondence to: Dr. David Savage, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1; dsavage@nosm.ca.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Objectives: 1) To assess temporal patterns in historical patient arrival rates in an emergency department (ED) to determine the appropriate number of shift schedules in an acute care area and a fast-track clinic and 2) to determine whether physician scheduling can be improved by aligning physician productivity with patient arrivals using an optimization planning model.

Methods: Historical data were statistically analyzed to determine whether the number of patients arriving at the ED varied by weekday, weekend, or holiday weekend. Poisson-based generalized additive models were used to develop models of patient arrival rate throughout the day. A mathematical programming model was used to produce an optimal ED shift schedule for the estimated patient arrival rates. We compared the current physician schedule to three other scheduling scenarios: 1) a revised schedule produced by the planning model, 2) the revised schedule with an additional acute care physician, and 3) the revised schedule with an additional fast-track clinic physician.

Results: Statistical modelling found that patient arrival rates were different for acute care versus fast-track clinics; the patterns in arrivals followed essentially the same daily pattern in the acute care area; and arrival patterns differed on weekdays versus weekends in the fast-track clinic. The planning model reduced the unmet patient demand (i.e., the average number of patients arriving at the ED beyond the average physician productivity) by 19%, 39%, and 69% for the three scenarios examined.

Conclusions: The planning model improved the shift schedules by aligning physician productivity with patient arrivals at the ED.

Résumé

Objectifs: L'étude avait pour objectifs de: 1) évaluer dans le temps, d'après des données historiques, l'affluence des patients dans un service des urgences (SU) afin de déterminer l'horaire de roulement des médecins dans une zone de soins impératifs et dans un service de traitement rapide et 2) déterminer s'il serait possible d'améliorer l'horaire des médecins en adaptant leur productivité à l'affluence des patients selon un modèle d'optimisation de la planification.

Méthode: Des données historiques ont fait l'objet d'une analyse statistique afin de déterminer si le nombre de patients arrivant au SU variait selon les jours de la semaine, les fins de semaine, ou les fins de semaine de congé. Nous avons utilisé des modèles additifs généralisés, reposant sur le processus de Poisson, pour élaborer des modèles d'affluence des patients tout le long de la journée. Un modèle mathématique de programmation a servi à élaborer un horaire de roulement optimal au SU en fonction de l'affluence estimée des patients. II y a eu comparaison de l'horaire actuel de travail des médecins avec trois scénarios de roulement: 1) un horaire modifié, produit par le modèle de planification; 2) l'horaire modifié, prévoyant l'ajout d'un médecin dans la zone de soins impératifs; et 3) l'horaire modifie, prévoyant l'ajout d'un médecin au service de traitement rapide.

Resultats: L'analyse a revele que l'affluence des patients variait selon qu'il s'agissait des soins imperatifs ou du traitement rapide; l'affluence etait a peu pres stable, tous les jours, dans la zone de soins imperatifs, tandis que l'affluence variait selon les jours de la semaine ou les fins de semaine au service de traitement rapide. Le modele de planification a permis de reduire le nombre de demandes non satisfaites (c'est-a-dire le nombre moyen d'arrivees au SU, superieur a la productivity moyenne des medecins) de 19%, de 39%, et de 69% dans les trois scenarios etudies.

Conclusion: Le modele de planification a permis d'ameliorer les horaires de roulement en adaptant la productivity des medecins a l'arrivee des patients au SU.

Type
Original Research
Copyright
Copyright © Canadian Association of Emergency Physicians 2014 

References

1.Rowe, BH, Bond, K, Ospina, MB, et al.Frequency, determinants,and impact of emergency department overcrowding in Canada Technology Report No. 67.3 Ottawa (ON)Canadian Agency for Drugs and Technologies in Health; 2006.Google Scholar
2.Canadian Association of Emergency Physicians/National Emergency Nurses Affiliation. Joint position statement: access to acute care in the setting of emergency department overcrowding. Can J Emerg Med 2003;5:8186.Google Scholar
3.OntarioMinistry ofHealth and Long-Term Care. Ontario wait times, emergency room wait times - emergency room targets 2012. Available at: http://www.health.gov.on.ca/en/pro/programs/waittimes/edrs/targets.aspx (accessed June 26, 2012).Google Scholar
4.Derlet, RW, Richards, JR. Overcrowding in the nation’s emergency departments: complex causes and disturbing effects. Ann Emerg Med 2000;35:6368, doi:10.1016/S0196-0644(00)70105-3.Google Scholar
5.Bond, K, Ospina, M, Blitz, S, et al.Interventions to reduce overcrowding in emergency departments. Ottawa (ON)Canadian Agency for Drugs and Technologies in Health; 2006.Google Scholar
6.Browne, G, Lam, L, Giles, H, et al.The effects of a seamless model of management on the quality of care for emergency department patients. J Qual Clin Pract 2000;20:120126, doi:10.1046/j.1440-1762.2000.00377.x.Google Scholar
7.Bucheli, B, Martina, B. Reduced length of stay in medical emergency department patients: a prospective controlled study on emergency physician staffing. Eur J Emerg Med 2004;11:2934, doi:10.1097/00063110-200402000-00006.CrossRefGoogle Scholar
8.Fernandes, CM, Christenson, JM. Use of continuous quality improvement to facilitate patient flow through the triage and fast-track areas of an emergency department. J Emerg Med 1995;13:847855, doi:10.1016/0736-4679(95)02023-3.Google Scholar
9.Krakau, I, Hassler, E. Provision for clinic patients in the ED produces more nonemergency visits. Am J Emerg Med 1999;17:1820, doi:10.1016/S0735-6757(99)90006-2.Google Scholar
10.Lau, FL, Leung, KP, Cocks, RA. Waitingtimeinanurban accident and emergency department - a way to improve it. J Accid Emerg Med 1997;14:299303, doi:10.1136/emj.14.5.299.Google Scholar
11.Rotstein, Z, Wilf-Miron, R, Lavi, B, et al.Management by constraints: considering patient volume when adding medical staff to the emergency department. Isr Med Assoc J 2002;4:170173.Google ScholarPubMed
12.Vilke, GM, Brown, L, Skogland, P, et al.Approach to decreasing emergency department ambulance diversion hours. J Emerg Med 2004;26:189192, doi:10.1016/j.jemermed. 2003.07.003.Google Scholar
13.Winston, WL. Operations research: applications and algorithms. SingaporeDuxbury Press; 2003.Google Scholar
14.Izady, N, Worthington, D. Setting staffing requirements for time dependent queueing networks: the case of accident and emergency departments. Eur J Oper Res 2012;219:531540, doi:10.1016/j.ejor.2011.10.040.Google Scholar
15.Centeno, MA, Giachetti, R, Linn, R, et al. A simulation-ILP based tool for scheduling ER staff.In:Chick S, Sanchez PJ, Ferrin D, et al., editors. Proceedings of the 2003 Winter Simulation Conference New Orleans (LA): IFNORMS Simulation Society; 2003. p. 1930-8. Available at: http://informs-sim.org/wsc03papers/251.pdf.Google Scholar
16.Coats, TJ, Michalis, S. Mathematical modelling of patient flow through an accident and emergency department. Emerg Med J 2001;18:190192, doi:10.1136/emj.18.3.190.Google Scholar
17.Schull, MJ, Vermeulen, M. Ontario's alternate funding arrangements for emergency departments: the impact on the emergency physician workforce. Can J Emerg Med 2005;7:100106.Google Scholar
18.Gurrin, LC, Scurrah, KJ, Hazelton, ML. Tutorial in biostatistics: spline smoothing with linear mixed models. Statist Med 2005;24:33613381, doi:10.1002/sim.2193.Google Scholar
19.Wood, SN. Generalized additive models: an introduction with R. Boca Raton, (FL)Chapman & Hall/CRC; 2006.Google Scholar
20.Core Team. R: a language and environment for statistical computing. ViennaR Foundation for Statistical Computing; 2012, Available at: http://www.R-project.org.Google Scholar
21.Carter, MW, Lapierre, SD. Scheduling emergency room physicians. Health Care Manage Sci 2001;4:347360, doi:10. 1023/A:1011802630656.Google Scholar
22.Knauth, P. Designing better shifts systems. Appl Ergon 1996;27:3944, doi:10.1016/0003-6870(95)00044-5.Google Scholar