Hostname: page-component-6bf8c574d5-vmclg Total loading time: 0 Render date: 2025-02-24T23:05:59.062Z Has data issue: false hasContentIssue false

Reversibility and transitivity of semigroup actions on homogeneous spaces

Published online by Cambridge University Press:  24 February 2025

Ronan A. Reis
Affiliation:
Departamento de Matemática e Computação, Universidade Estadual Paulista, R. Roberto Simonsen, 305, 19060900, Presidente Prudente, Brazil e-mail: ronan.reis@unesp.br
Luiz A. B. San Martin
Affiliation:
Instituto de Matemática, Universidade Estadual de Campinas, Estatística e Computação Científica, Cx. Postal 6065, 13081970, Campinas, Brazil e-mail: smartin@unicamp.br
Victor H. L. Rocha*
Affiliation:
Departamento de Matemática e Computação, Universidade Estadual Paulista, R. Roberto Simonsen, 305, 19060900, Presidente Prudente, Brazil e-mail: ronan.reis@unesp.br

Abstract

This paper studies reversibility and transitivity of semigroups acting on homogeneous spaces. Properties of the reversor set of a subsemigroup acting on homogeneous spaces are presented. Let G be a topological group and L a subgroup of G. Assume that S is a subsemigroup of G with nonempty interior. It is presented a study of the reversibility of the S-action on $G/L$ in terms of the actions of S and L on homogeneous spaces of G. The results relate the reversibility and the transitivity of S in $G/L$ with the minimality of the action of L on homogeneous spaces of G. In addition, sufficient conditions for S to be right reversible in G if S is reversible in $G/L$ are presented.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, L., Kliemann, W., and Oeljeklaus, E., Lyapunov exponents of linear stochastic systems in Lyapunov exponents . In: Proceedings of a workshop in Bremen (Arnold, L. and Wihstutz, V., editors), Lecture Notes in Mathematics, 1186, Springer-Verlag, Berlin, 1986, pp. 85125.Google Scholar
Ayala, V. and San Martin, L. A. B., Controllability properties of a class of control systems on lie groups . In: Nonlinear control in the year 2000, Lecture Notes in Control and Information Sciences, 258, Springer, London, 2001, pp. 8392.Google Scholar
Barros, C. J. B. and San Martin, L. A. B., On the number of control sets on projective spaces . Syst. Control Lett. 29(1996), 2126.CrossRefGoogle Scholar
Husemoller, D., Fibre bundles, Graduate Texts in Mathematics, 20, Springer-Verlag, New York, 1975.Google Scholar
Lawson, J. D., Embeddings in semigroups . In: The analytical and topological theory of semigroups (Hofmann, K. H., Lawson, J. D. and Lawson, J. S., editors), Trends and Developments, de Gruyter, Berlin, 1990.Google Scholar
Reis, R. A. and San Martin, L. A. B., Reversibility properties of semigroups actions on homogeneous spaces . Semigroup Forum 84(2012), no. 3, 472486.CrossRefGoogle Scholar
Reis, R. A., San Martin, L. A. B. and Rocha, V. H. L., Mid-reversibility properties of semigroup actions on homogeneous spaces . Semigroup Forum 104 (2022), 689703.CrossRefGoogle Scholar
Rocio, O. G. and San Martin, L. A. B., Connected components of open semigroups in semi-simple Lie groups . Semigroup Forum 69(2004), no. 1, 129.CrossRefGoogle Scholar
Ruppert, W. A. F., On open subsemigroups of connected groups . Semigroup Forum 39(1989), 347362.CrossRefGoogle Scholar
San Martin, L. A. B., Nonreversibility of subsemigroups of semi-simple Lie groups . Semigroup Forum 44(1992), 376387.CrossRefGoogle Scholar
San Martin, L. A. B., Invariant control sets on flag manifolds . Math. Control Sig. Syst. 6(1993), 4161.CrossRefGoogle Scholar
San Martin, L. A. B., Control sets and semigroups in semi-simple Lie groups . In: Semigroups in algebra, geometry and analysis, Gruter Verlag, 1995. https://doi.org/10.1515/9783110885583.275 Google Scholar
San Martin, L. A. B., On global controllability of discrete-time control systems . Math. Control Sig. Syst. 8(1995), 279297.CrossRefGoogle Scholar
San Martin, L. A. B., Homogeneous spaces admitting transitive semigroups . J. Lie Theory 8(1998), 111128.Google Scholar
San Martin, L. A. B., Maximal semigroups in semi-simple Lie groups . Trans. Amer. Math. Soc. 353(2001), 51655184.CrossRefGoogle Scholar
San Martin, L. A. B., Nonexistence of invariant semigroups in affine symmetric spaces . Math. Ann. 321(2001), 587600.CrossRefGoogle Scholar
San Martin, L. A. B. and Santana, A. J., The homotopy type of Lie semigroups in semisimple Lie groups . Monatsh. Math. 136(2002), 151173.CrossRefGoogle Scholar
San Martin, L. A. B. and Tonelli, P. A., Semigroup actions on homogeneous spaces . Semigroup Forum 50(1995), 5988.CrossRefGoogle Scholar
San Martin, L. A. B. and Tonelli, P. A., Transitive actions of semigroups in semi-simple Lie groups . Semigroup Forum 58(1999), 142151.CrossRefGoogle Scholar
Warner, G., Harmonic analysis on semi-simple Lie groups, Springer-Verlag, Berlin, Heidelberg, 1972.Google Scholar