No CrossRef data available.
Article contents
Absolute Tauberian Constants for Hausdorff Transformations
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let be a fixed sequence of real or complex numbers. The Hausdorff transform {tn} of a sequence \sn) by means of the fixed sequence (or, in short, the (H, μn) transform) is given by
where, for r, q ≧ 0,
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1974
References
1.
Bateman, H., Higher transcendental functions, Volume 1 (McGraw-Hill, New York, 1953).Google Scholar
2.
Fekete, M., Vizsálatok az absolut summabilis sorokrol, alkalmazással a Direchlet
—éss Fourier —sorokra, math, és Termés. Ért.
32 (1914), 389–425.Google Scholar
4.
Hyslop, J. M., A Tauberian theorem for absolute summability, J. London Math. Soc.
12 (1937), 176–180.Google Scholar
5.
Jakimovski, A., The sequence-to-function analogues to Hausdorff transformations, The Bull, of the Research Council of Israel. Vol. 8F, No. 3 (1960), 135–154.Google Scholar
6.
Knopp, K. and Lorentz, G. G., Belträge Zür absoluten Limitierung.
Arch. Math. (Basel)
2 (1949), 10–16.Google Scholar
8.
Mears, F. M., Absolute regularity and the Norlund mean, Ann. of Math.
83 (1937), 594–601.Google Scholar
9.
Sherif, S., Absolute Tauberian constants for Cesaro means, Trans. Amer. Math. Soc.
168 (1972), 233-241. Google Scholar
10.
Whittaker, J.M., The absolute summability of Fourier series, Proc. Edinburgh Math. Soc.
2 (1931), 1–5.Google Scholar
You have
Access