No CrossRef data available.
Article contents
An Explicit Polynomial Expression for a q-Analogue of the 9- j Symbols
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Using standard transformation and summation formulas for basic hypergeometric series we obtain an explicit polynomial form of the $q$-analogue of the $\text{9-}\,j$ symbols, introduced by the author in a recent publication. We also consider a limiting case in which the $\text{9-}\,j$ symbol factors into two Hahn polynomials. The same factorization occurs in another limit case of the corresponding $q$-analogue.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2011
References
[1]
Ališauskas, S., The triple sum formulas for 9 j coefficients of SU(2) and uq(2). J. Math. Phys. 41 (2000), no. 11, 7589-7610. doi:10.1063/1.1312198Google Scholar
[2]
Ališauskas, S., The multiple sum formulas for 9- j and 12- j coefficients of SU(2) and uq(2). arXiv:math/9912142v5.Google Scholar
[3]
Alişauskas, S. and A. P., Jucys, Weight lowering operators and the multiplicity-free isoscalar factors for the group R5. J. Mathematical Phys. 12 (1971), 594-605. doi:10.1063/1.1665626Google Scholar
[4]
Aomoto, K. and, Kita, M., Theory of hypergeometric functions. (Japanese), Springer, Tokyo, 1994.Google Scholar
[5]
Askey, R. and, J. A., Wilson, A set of polynomials that generalize Racah coefficients or 6- j symbols.
SIAM J. Math. Anal. 10 (1979), no. 5, 1008-1016. doi:10.1137/0510092Google Scholar
[6]
Askey, R. and, Wilson, J. A., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials.
Mem. Amer. Math. Soc. 54 (1985), no. 319.Google Scholar
[7]
Bailey, W. N., Generalized hypergeometric series.
Cambridge Tracts in Mathematics and Mathematical Physics, 32, Stechert-Hafner, Inc., New York, 1964.Google Scholar
[8]
Edmonds, A. R., Angular momentum in quantum mechanics. In: Investigations in Physics, Vol. 4, Princeton University Press, Princeton, NJ, 1957.Google Scholar
[9]
Erdèlyi, A., Higher Transcendental Functions. Bateman Manuscript Project, McGraw-Hill, New York, 1953.Google Scholar
[10]
Gasper, G. and, Rahman, M., Basic hypergeometric series. Second ed., Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004.Google Scholar
[11]
Hoare, M. and, Rahman, M., A probabilistic origin for a new class of bivariate polynomials.
SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 089.Google Scholar
[12]
Hoare, M. and, Rahman, M., Cumulative Bernoulli trials and Krawtchouk processes.
Stochastic Process. Appl. 16 (1984), no. 2, 113-139. doi:10.1016/0304-4149(84)90014-0Google Scholar
[13]
Ismail, M. E. H., Classical and quantum orthogonal polynomials in one variable.
Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005.Google Scholar
[14]
Kirillov, A. N. and Yu Reshetikhin, N., Representations of the algebraUq(s(2)), q-orthogonal polynomials and invariants of links. In: Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ. Teaneck, NJ, 1989.Google Scholar
[15]
Landau, L. D. and Lifschitz, E. M., Quantum mechanics: non-relativistic theory. Second ed., Addison-Wesley, Reading, MA, 1965.Google Scholar
[16]
Mizukawa, H., Zonal spherical functions on the complex reflection groups and (n + 1,m + 1)-hypergeometric functions. Adv. Math. 184 (2004), 1-17. doi:10.1016/S0001-8708(03)00092-6Google Scholar
[17]
Nomura, M., Various kinds of relation for 3n- j symbols of quantum group SUq(2). J. Phys. Soc. Japan 59 (1990), no. 11, 3851-3860. doi:10.1143/JPSJ.59.3851Google Scholar
[19]
Rahman, M., A q-analogue of the 9- j symbols and their orthogonality.
J. Approx. Theory
161 (2009), no. 1, 239-258. doi:10.1016/j.jat.2008.09.008Google Scholar
[20]
Rosengren, H., Another proof of the triple sum formula for Wigner 9 j-symbols. J. Math. Phys. 40 (1999), no. 12, 6689-6691. doi:10.1063/1.533114Google Scholar
[21]
Suslov, S. K., The 9 j-symbols as orthogonal polynomials in two discrete variables. (Russian) Yadernaya Fiz. 38 (1983), no. 4, 1102-1104.Google Scholar
[22]
On the theory of 9 j-symbols. (Russian) Teoret. Mat. Fiz. 88 (1991), no. 1, 66-71.Google Scholar
[23]
Wilson, J. A., Hypergeometric, recurrence relations and some new orthogonal polynomials, Ph. D. Thesis, University of Wisconsin, Madison, 1978.Google Scholar
[24]
Wilson, J. A., Some hypergeometric orthogonal polynomials.
SIAM J. Math. Anal. 11 (1980), no. 4, 690-701. doi:10.1137/0511064Google Scholar
[25]
Zhedanov, A., j-symbols of the oscillator algebra and Krawtchouk polynomials in two variables.
J. Phys. A
30 (1997), 8337-8353. doi:10.1088/0305-4470/30/23/029Google Scholar
You have
Access