Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T12:57:38.538Z Has data issue: false hasContentIssue false

Asymptotic Behaviour Of The Inverse Of a Laplace Transform

Published online by Cambridge University Press:  20 November 2018

T. E. Hull
Affiliation:
University of British Columbia
C. Froese
Affiliation:
University of British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. There are many problems, particularly in circuit theory, where the inverse of a Laplace transform is required but only for large values of the independent variable. For example (2, p. 66) the Laplace transform

of the current function for a semi-infinite cable under certain conditions turns out to be

.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1955

References

1. Bush, V., Operational circuit analysis (New York, 1929).Google Scholar
2. Carson, J. R., Electric circuit theory and the operational calculus (New York, 1926).Google Scholar
3. Colombo, S., Sur quelques transcendantes introduites par la résolution des équations intégrales de Volterra à noyaux logarithmiques, Bull. Sci. Math. (2), 77 (1953), 89104.Google Scholar
4. Doetsch, G., Handbuch der Laplace-Transformation (Basel, 1950), Bd. 1.Google Scholar
5. Hardy, G. H., Ramanujan (Cambridge, 1940).Google Scholar
6. Heaviside, O., Electromagnetic theory (London, 1899), vol. 2.Google Scholar
7. Truesdell, C., A unified theory of special functions (Princeton, Ann. Math. Studies, no. 18, 1948).Google Scholar