Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T15:41:11.097Z Has data issue: false hasContentIssue false

Axioms for Absolute Geometry

Published online by Cambridge University Press:  20 November 2018

J. F. Rigby*
Affiliation:
University College, Cardiff
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The axioms of Euclidean geometry may be divided into four groups: the axioms of order, the axioms of congruence, the axiom of continuity, and the Euclidean axiom of parallelism (6). If we omit this last axiom, the remaining axioms give either Euclidean or hyperbolic geometry. Many important theorems can be proved if we assume only the axioms of order and congruence, and the name absolute geometry is given to geometry in which we assume only these axioms. In this paper we investigate what can be proved using congruence axioms that are weaker than those used previously.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

References

1. Bachmann, F., Aufbau der Géométrie aus dem Spiegelungsbegriff (Grundlehren der mathematischen Wissenschaften, 96; Berlin, 1959).10.1007/978-3-662-01234-5CrossRefGoogle Scholar
2. Coxeter, H. S. M., Non-Euclidean geometry (Toronto, 1957).Google Scholar
3. Coxeter, H. S. M., Introduction to geometry (New York, 1961).Google Scholar
4. Dorroh, J. L., Concerning a set of metrical hypotheses for geometry, Ann. of Math. (2), 29 1927), 229231.Google Scholar
5. Dorroh, J. L., Concerning a set of axioms for the semi-quadratic geometry of a three-space, Bull. Amer. Math. Soc, 36 (1930), 719721.Google Scholar
6. Forder, H. G., The foundations of Euclidean geometry (London, 1927; New York, 1958).Google Scholar
7. Forder, H. G., On the axioms of congruence in semi-quadratic geometry, J. London Math. Soc, 22 1947), 268275.Google Scholar
8. Heath, T. L., The thirteen books of Eculid's elements, Vol. I (Cambridge, 1908; New York, 1956).Google Scholar
9. Hilbert, D., The foundations of geometry, tr. Townsend, E. J. (Chicago, 1910).Google Scholar
10. Kerékjártό, B., Les fondaments de la géométrie, Vol. I (Budapest, 1955).Google Scholar
11. Moore, R. L., Sets of metrical hypotheses for geometry, Trans. Amer. Math. Soc, 9 (1908), 487512.Google Scholar
12. Piesyk, Z., Uwagi o aksjomatyce geometrii Tarskiego, Prace Mat., 11 (1965), 2333.Google Scholar
13. Robinson, G. de B., The foundations of geometry (Toronto, 1940).Google Scholar
14. Szász, P., On axioms of congruence due to H. G. Forder, Monatsh. Math., 65 (1961), 270276.Google Scholar
15. Tarski, A., What is elementary geometry? {The axiomatic method, ed. Henkin, L., Suppes, P., Tarski, A.) (Amsterdam, 1959).Google Scholar
16. Veblen, O., A system of axioms for geometry, Trans, Amer. Math. Soc, 5 (1904), 343384.Google Scholar
17. Veblen, O., The foundations of geometry {Monographs on topics of modern mathematics, ed. Young, J. W., Chapter I (New York, 1911).Google Scholar