Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T11:17:49.512Z Has data issue: false hasContentIssue false

Bounds for the distribution of the Frobenius traces associated to products of non-CM elliptic curves

Published online by Cambridge University Press:  07 March 2022

Alina Carmen Cojocaru*
Affiliation:
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S Morgan St, 322 SEO, Chicago, IL 60607, USA Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea Grivitei St, Bucharest 010702, Sector 1, Romania
Tian Wang
Affiliation:
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 S Morgan St, 322 SEO, Chicago, IL 60607, USA e-mail: twang213@uic.edu
*

Abstract

Let $g \geq 1$ be an integer and let $A/\mathbb Q$ be an abelian variety that is isogenous over $\mathbb Q$ to a product of g elliptic curves defined over $\mathbb Q$ , pairwise non-isogenous over $\overline {\mathbb Q}$ and each without complex multiplication. For an integer t and a positive real number x, denote by $\pi _A(x, t)$ the number of primes $p \leq x$ , of good reduction for A, for which the Frobenius trace $a_{1, p}(A)$ associated to the reduction of A modulo p equals t. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that $\pi _A(x, 0) \ll _A x^{1 - \frac {1}{3 g+1 }}/(\operatorname {log} x)^{1 - \frac {2}{3 g+1}}$ and $\pi _A(x, t) \ll _A x^{1 - \frac {1}{3 g + 2}}/(\operatorname {log} x)^{1 - \frac {2}{3 g + 2}}$ if $t \neq 0$ . These bounds largely improve upon recent ones obtained for $g = 2$ by Chen, Jones, and Serban, and may be viewed as generalizations to arbitrary g of the bounds obtained for $g=1$ by Murty, Murty, and Saradha, combined with a refinement in the power of $\operatorname {log} x$ by Zywina. Under the assumptions stated above, we also prove the existence of a density one set of primes p satisfying $|a_{1, p}(A)|>p^{\frac {1}{3 g + 1} - \varepsilon }$ for any fixed $\varepsilon>0$ .

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

A.C.C. was partially supported by a Collaboration Grant for Mathematicians from the Simons Foundation under Award No. 709008.

References

Akbari, A., David, C., and Juricevic, R., Average distributions and products of special values of $\ L$ -series. Acta Arith. 111(2004), no. 3, 239268.CrossRefGoogle Scholar
Akbary, A. and Park, J., On the Lang–Trotter conjecture for two elliptic curves. Ramanujan J. 49, 2019, pp. 585623.CrossRefGoogle Scholar
Artin, E., Beweis des allgemeinen Reziprozitätsgesetzes. Hamb. Abh. 5(1927), 353363.CrossRefGoogle Scholar
Baier, S. and Jones, N., A refined version of the Lang-Trotter conjecture. Int. Math. Res. Notices 3(2009), 433461.Google Scholar
Chen, H., Jones, N., and Serban, V., The Lang–Trotter conjecture for products of non-CM elliptic curves. Ramanujan J. (2020), to appear. arxiv:2006.11269Google Scholar
Cojocaru, A. C., Davis, R., Silverberg, A., and Stange, K. E., Arithmetic properties of the Frobenius traces defined by a rational abelian variety (with two appendices by J-P. Serre). Int. Math. Res. Notices 12(2017), 35573602.Google Scholar
Elkies, N. D., Distribution of supersingular primes. J. Arith. 198–200(1991), 127132.Google Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(1983), 349366.CrossRefGoogle Scholar
Fouvry, É. and Murty, M. R., Supersingular primes common to two elliptic curves . In: Number theory (Paris, 1992–1993), London Math. Soc. Lecture Note Series, 215, Cambridge University Press, 1995, pp. 91102.CrossRefGoogle Scholar
Honda, T., Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan 20(1968), 8395.CrossRefGoogle Scholar
Katz, N. M., Lang–Trotter revisited. Bull. Am. Math. Soc. 46(2009), no. 3, 413457.CrossRefGoogle Scholar
Lagarias, J. and Odlyzko, A., Effective versions of the Chebotarev density theorem . In: Fröhlich, A. (ed.), Algebraic number fields, Academic Press, New York, 1977, pp. 409464.Google Scholar
Lang, S., Abelian varieties, Springer-Verlag, New York, Berlin, 1983.CrossRefGoogle Scholar
Lang, S. and Trotter, H., Frobenius distributions in ${GL}_2$ -extensions, Lecture Notes in Mathematics, 504, Springer Verlag, Berlin, New York, 1976.CrossRefGoogle Scholar
Lombardo, D., An explicit open image theorem for products of elliptic curves. J. Num. Theory 168(2016), 386412.CrossRefGoogle Scholar
Murty, M. R., Murty, V. K., and Saradha, N., Modular forms and the Chebotarev density theorem. Amer. J. Math. 110(1988), no. 2, 253281.CrossRefGoogle Scholar
Murty, V. K., Modular forms and the Chebotarev density theorem II . In: Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Notes Series, 247, Cambridge University Press, Cambridge, 1997, pp. 287308.CrossRefGoogle Scholar
Oort, F., Abelian varieties over finite fields. Higher-dimensional geometry over finite fields, NATO Sci. Peace Scur. Ser. D Inf. Commun. Secur., 16, IOS, Amsterdam, 2008, pp. 123188.Google Scholar
Serre, J-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(1972), no. 4, 259331.CrossRefGoogle Scholar
Serre, J-P., Quelques applications du théorème de densité de Chebotarev. Publ. Math. I. H. E. S. 54(1981), 123201.CrossRefGoogle Scholar
Serre, J-P. and Tate, J., Good reduction of abelian varieties. Ann. Math. 88(1968), 492517; Oeuvres/Collected Papers OO, Springer Verlag, Berlin, 1985, pp. 472–497.CrossRefGoogle Scholar
Thorner, J. and Zaman, A., A Chebotarev variant of the Brun–Titchmarsh theorem and bounds for the Lang–Trotter conjectures. Int. Math. Res. Notices 16(2018), 49915027.CrossRefGoogle Scholar
Toyama, H., A note on the different of the composed field. Kodai Math. Sem. Rep. 7(1955), no. 2, 4344.CrossRefGoogle Scholar
Wan, D., On the Lang-Trotter conjecture. J. Num. Theory 35(1990), 247268.CrossRefGoogle Scholar
Waterhouse, W. C., Abelian varieties over finite fields. Ann. Sc. Ec. Norm. Sup. 2(1969), 521560.CrossRefGoogle Scholar
Zywina, D., Bounds for the Lang-Trotter Conjectures, in SCHOLAR—A scientific celebration highlighting open lines of arithmetic research, Contemporary Mathematics, 655, American Mathematical Society, Providence, RI, 2015, pp. 235256.CrossRefGoogle Scholar