Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:57:41.706Z Has data issue: false hasContentIssue false

Canonical Extensions of Harish-Chandra Modules to Representations of G

Published online by Cambridge University Press:  20 November 2018

W. Casselman*
Affiliation:
University of British Columbia, Vancouver, British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be the group of R-rational points on a reductive, Zariskiconnected, algebraic group defined over R, let K be a maximal compact subgroup, and let g be the corresponding complexified Lie algebra of G. It is a curious fault of the current representation theory of G that for technical reasons one very rarely works with representations of G itself, but rather with a certain category of simultaneous representations of g and K. The reasons for this are, roughly speaking, that for a given (g,K)-module of finite length there are clearly any number of overlying rather distinct continuous G-representations, whose ‘essence’ is captured by the (g, K)-module alone. At any rate, this paper will propose a remedy for this inconvenience, and define a category of smooth representations of G of finite length which will, I hope, turn out to be as easy to work with as representations of (g, K) and occasionally much more convenient. It is to be considered a report on what has been to a great extent joint work with Nolan Wallach, and is essentially a sequel to [38].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Arthur, J., A Paley-Wiener theorem for real reductive groups, Acta Mathematica 150 (1983), 189.Google Scholar
2. Ban, E.van den and Delorme, P., Quelques propriétés des representations sphériques pour les espaces symétriques réductifs, to appear in Jour. Func. Anal.Google Scholar
3. Beilinson, A. and Bernstein, J., A generalization of Casselman s submodule theorem, pp. 69- 84 in Representation theory of reductive groups (Proceedings of the University of Utah conference 1982), Progress in Mathematics 40 (Birkhaüser, Boston, 1983).Google Scholar
4. Borel, A., Représentations de groupes localement compact, Lecture Notes in Mathematics 276 (Springer-Verlag, New York, 1972).Google Scholar
5. Boel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Studies (Princeton University Press, Princeton, 1980).Google Scholar
6. Bourbaki, N., Espaces vectoriels topologiques, Chapitres III-V, Fasc. 18 of Éléments de mathématiques (Hermann, Paris, 1955).Google Scholar
7. Bourbaki, N., Intégration, Chapitres 78, Fasc. 29 of Eléments de mathématique (Hermann, Paris, 1963).Google Scholar
8. Cartier, P., Vecteurs differentiables dans les représentations unitaires des groupes de Lie, exposé 454 in Séminaire Bourbaki 1974/1975. Lecture Notes in Mathematics 670 (Springer-Verlag, New York, 1976).Google Scholar
9. Casselman, W., The differential equations satisfied by matrix coefficients, manuscript (1975).Google Scholar
10. Casselman, W., Jacquet modules for real reductive groups, pp. 557563 in Proceedings of the international Congress of Mathematicians, Helsinki (1979)Google Scholar
11. Casselman, W., Introduction to the Schwartz space of T\G, preprint (1987)Google Scholar
12. Casselman, W. and Miličič, D., Asymptotic behaviour of matrix coefficients of admissible representations, Duke Math. Jour. 49 (1982), 869930.Google Scholar
13. Casselman, W. and Osborne, M.S., The restriction of admissible representations to n, Math. Ann. 233 (1978), 193198.Google Scholar
14. Coddington, E.A. and Levinson, N., Theory of ordinary differential equations, (McGraw-Hill, New York, 1955).Google Scholar
15. Dixmier, J. and Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 307330.Google Scholar
16. Ginsburg, V., Admissible modules on a symmetric space, preprint (1978).Google Scholar
17. Goodman, R. and Wallach, N., Whittaker vectors and conical vectors, Jour. Funct. Anal. 39 (1980), 199279.Google Scholar
18. Harish-Chandra, , Harmonie analysis on semi-simple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529551.Google Scholar
19. Hecht, H. and Schmid, W., Characters, asymptotics, and n-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49151.Google Scholar
20. Helgason, S., A duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970), 154.Google Scholar
21. Hörmander, L., The analysis of linear partial differential operators I., Grundlehren der Math. Wiss. 256 (Springer-Verlag, New York, 1983).Google Scholar
22. Kashiwara, M. and Kawai, T., On holonomic systems of micro differential equations III. Systems with regular singularities', Publ. R.I.M.S. Kyoto Univ. 17 (1981), 813979.Google Scholar
23. Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima, T. and Tanaka, M., Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. 107 (1978), 139.Google Scholar
24. Knapp, A., Representation theory of semi-simple groups (Princeton Univ. Press, Princeton, 1986).Google Scholar
25. Kostant, B., On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627642.Google Scholar
26. Kostant, B., On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101184.Google Scholar
27. Langlands, R.P., On the classification of irreducible representations of real algebraic groups, preprint, Institute for Advanced Study, Princeton (1973).Google Scholar
28. McConnell, J., The intersection theorem for a class of non-commutative rings, Proc. London Math. Soc. 17 (1967), 487498.Google Scholar
29. Miličič, D., Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. Jour. 44 (1977), 5988.Google Scholar
30. Mostow, D., Self-adjoint groups, Ann. Math. 62 (1955), 4455.Google Scholar
31. Oshima, T., A realization of Riemannian symmetric spaces, J. Math. Soc. Japan 30 (1978), 117132.Google Scholar
32. Oshima, T., Fourier analysis on semi-simple symmetric spaces, pp. 357369 in Non-commutative harmonic analysis and Lie groups, Lecture Notes in Mathematics 880 (Springer-Verlag, New York, 1980).Google Scholar
33. Prischepionok, S., Natural topologies for linear representations of semi-simple Lie algebras, (in Russian), Doklady Akad. Nauk S.S.S.R. 231 (1976), 292294.Google Scholar
34. Schmid, W., Boundary value problems for group invariant differential equations, pp. 311322 in the special volume of Astérisque entitled Elie Cartan et les mathématiques d'aujourdhui (1984).Google Scholar
35. Shahidi, F., Whittaker models for real groups, Duke Math. Jour. 47 (1980), 99125.Google Scholar
36. Treves, F., Topological vector spaces, distributions, and kernels (Academic Press, New York, 1967).Google Scholar
37. Vergne, M., Sur les intégrales d'entrelacement de R.A.Kunze et E.M.Stein (d'après G. Schiffman), Exposé 369, Séminaire Bourbaki 1969–70, Lecture Notes in Mathematics 180 (Springer-Verlag, New York, 1971).Google Scholar
38. Wallach, N., Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in Lie group representations I (Proceedings, University of Maryland 1982- 1983), Lecture Notes in Mathematics 1024 (Springer-Verlag, New York, 1983).Google Scholar
39. Warner, G., Harmonic analysis on semi-simple groups I and II, Grundlehren fur Math. Wiss. 188189 (Springer-Verlag, New York, 1972).Google Scholar
40. Zuckerman, G., Continuous cohomology and unitary representations of real reductive groups, Ann. of Math. 197 (1987), 495516.Google Scholar