Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T03:49:42.976Z Has data issue: false hasContentIssue false

A Characterization of Multi-Dimensional Perron Integrals and the Fundamental Theorem

Published online by Cambridge University Press:  20 November 2018

W. B. Jurkat
Affiliation:
Abteilung für Mathematik V, Universität Ulm, Oberer Eselsberg, 7900 Ulm (Donau), Federal Republic of Germany
R. W. Knizia
Affiliation:
Abteilung für Mathematik V, Universität Ulm, Oberer Eselsberg, 7900 Ulm (Donau), Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper weak Perron integrals are characterized as n-dimensional interval functions F which are additive, differentiable almost everywhere in the weak sense and which satisfy a new continuity condition concerning the singular set. Before, only one-dimensional Perron integrals were characterized by the theorem of Hake- Alexendrov-Looman, and analogous results for strong Perron integrals (which are best analyzed, but more restrictive) are not available in higher dimensions yet. In order to formulate our continuity condition we introduce an outer measure μ by means of a new weak variation of F which is required to vanish on all null sets. The same condition is also necessary and sufficient for the integral of the weak derivative to yield the original interval function. This “fundamental theorem” is split into two fundamental inequalities of very general nature which contain additional singular terms involving our variation. These inequalities are very useful also for Lebesgue integrals.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Bauer, H., Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen, Monatsh. Math. 26 (1915), 153198. [FM 45, 446]Google Scholar
2. Besicovitch, A.S., On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighborhood of non-isolated singular point, Proc. London Math. Soc. 32(1931), 19.Google Scholar
3. Henstock, R., The use of convergence factors in Ward integration, Proc. London Math. Soc. 10(1960), 107121. [MR 22#12197]Google Scholar
4. Henstock, R., Theory of integration. Butterworths, London, 1963. [MR 28 #1274]Google Scholar
5. Henstock, R., Linear Analysis. Butterworths, London, 1967. [MR 54 #7725]Google Scholar
6. Henstock, R., Integration by parts, Aequationes Math. 9(1973), 118. [MR 47 #3608]Google Scholar
7. Henstock, R., Integration, variation and differentiation in division spaces, Proc. Roy. Irish Acad. 78(1978), 6985. [MR 80d:26011]Google Scholar
8. Henstock, R., The variation on the real line, Proc. Roy. Irish Acad. (1) 79(1979), 10 pp. [MR 81d:26005]Google Scholar
9. Henstock, R., Generalized Riemann integration and an intrinsic topology, Can. J. Math. 32(1980), 395413. [MR 82b: 26010]Google Scholar
10. Henstock, R., Division spaces, vector-valued functions and backwards martingales, Proc. Roy. Irish Acad. 80(1980), 217232. [MR 82i:60091]Google Scholar
11. Kempisty, S., Sur les fonctions absolument continues d'intervalle, Fund. Math. 27(1936), 1037. [FM 62, 248]Google Scholar
12. Kempisty, S., Sur les fonctions absolument semi-continues, Fund. Math. 30(1938), 104127. [FM 64, 200]Google Scholar
13. Kempisty, S., Fonctions d'intervalle non additives, Actual. Sci. Industr. 824(1939), 62 pp. [FM 65, 1175], [MR 1,207]Google Scholar
14. Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter,, Czech. Math. J. 7(1957), 418449. [MR 22 #2735]Google Scholar
15. Kurzweil, J., Nichtabsolut konvergente Intégrale. Teubner, Leipzig, 1980. [MR 82m:26007]Google Scholar
16. Mařik, J., Základy théorie integráulu v euklidových prostorech, Casopis Pest. Mat. 77(1952), 151. 125— 145, 267301. [MR 15, 691]Google Scholar
17. Ridder, J., Über stetige, additive Intervallfunktionen in der Ebene und Hire Derivierten, Nieuw. Arch. Wis. (1) 16(1929), 5569. [FM 55, 149]Google Scholar
18. Ridder, J., Ein einheitliches Verfahren zur Definition von Absolut-und Bedingt-Konvergenten Integralen,, Indag. Math. 27(1965), 113. 1430. 3139. 165177. 365375. 705745. [MR 31 #308; 35 #4354; 32 #187; 32 #5836]Google Scholar
19. Ridder, J., Ein einheitliches Verfahren zur Definition von Absolut-und Bedingt-Konvergenten Integralen,, Indag. Math. 28(1966), 248257. [MR 33 #5833]Google Scholar
20. Ridder, J., Ein einheitliches Verfahren zur Definition von Absolut-und Bedingt-Konvergenten Integralen,, Indag. Math. 29(1967), 17. 817. 305316. [MR 35 #4355; 36 #323]Google Scholar
21. Ridder, J., Ein einheitliches Verfahren zur Definition von Absolut-und Bedingt-Konvergenten Integralen,, Indag. Math. 31(1969), 1017. [MR 39 #1619]Google Scholar
22. Ridder, J., Äquivalenzen von Integraldefinitionen im Sinne von Denjoy, von Perron und von Riemann, Indag. Math 31(1969), 201212. [MR 40 #290]Google Scholar
23. Romanovski, P., Intégrale de Denjoy dans les espaces abstraits, Mat. Sborr», N.S. 9(1941), 67120. [FM 68, 170], [MR 2, 354]Google Scholar
24. Romanovski, P., Intǵrale de Denjoy dans l'espace à n dimensions, Mat. Shorn, N.S. 9(1941), 281307. [FM 68, 172], [MR 2, 354]Google Scholar
25. Romanovski, P.,Intégrale relative à un réseau, Mat. Shorn. N.S. 9(1941), 309316. [FM 68, 173], [MR 2, 354]Google Scholar
26. Saks, S., Theory of the integral, Dover, New York, 1964. [MR 29 #4850], [FM 63, 183]Google Scholar
27. Thomson, B.S., Constructive definition for non-absolutely convergent integrals, Proc. London Math. Soc. 20(1970), 699716. [MR 42 #3248]Google Scholar
28. Thomson, B.S., Construction of measures and integrals, Trans. Amer. Math. Soc. 160(1971), 287296. [MR 43 #6385]Google Scholar
29. Trjitzinsky, W.J., Theory of functions of intervals and applications to junctions of a complex variable, J. Math. Pure Appl. 25(1946), 347-395 (1947). [MR 9, 418]Google Scholar
30. Trjitzinsky, W.J., Totalisation dans les espaces abstraits. Mem. Sci. Math. CLV, Paris, 131 pp., 1963. [MR 28 #4078]Google Scholar
31. Trjitzinsky, W.J.,La totale-D de Denjoy et la totale-S symétrique. Mem. Sci. Math. CLV, Paris, 105 pp., (1968). [MR 39 #1604]Google Scholar
32. Trjitzinsky, W.J., Totalisations abstraites dans espaces vectoriels, Ann. Mat. Pura Appl. 82(1969), 275379. [MR 55 #8274]Google Scholar
33. Ward, A.J., On the derivation of additive functions of intervals in m-dimensional space, Fund. Math. 28(1937), 265279. [FM 63,192]Google Scholar
34. Wheeden, R.L., Zygmund, A., Measure and integral. Dekker, New York, 1977. [MR 58 #11295]Google Scholar