Published online by Cambridge University Press: 20 November 2018
We generalize the Chern class relation for the transversal intersection of two nonsingular varieties to a relation for possibly singular varieties, under a splayedness assumption. We show that the relation for the Chern–Schwartz–MacPherson classes holds for two splayed hypersurfaces in a nonsingular variety, and under a strong splayedness assumption for more general subschemes. Moreover, the relation is shown to hold for the Chern–Fulton classes of any two splayed subschemes. The main tool is a formula for Segre classes of splayed subschemes. We also discuss the Chern class relation under the assumption that one of the varieties is a general very ample divisor.