Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T12:46:47.688Z Has data issue: false hasContentIssue false

Class Numbers of Real Quadratic Fields, Continued Fractions, Reduced Ideals, Prime-Producing Quadratic Polynomials and Quadratic Residue Covers

Published online by Cambridge University Press:  20 November 2018

S. Louboutin
Affiliation:
University of Caen, France
R. A. Mollin
Affiliation:
University of Calgary, Canada
H. C. Williams
Affiliation:
University of Manitoba, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider the relationship between real quadratic fields, their class numbers and the continued fraction expansion of related ideals, as well as the prime-producing capacity of certain canonical quadratic polynomials. This continues and extends work in [10]–[31] and is related to work in [3]–[4].

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Cohn, H., A second course in number theory, John Wiley and Sons Inc., New York/London (1962).Google Scholar
2. Dickson, L.E., Theory of Numbers, Chelsea, NY (1957).Google Scholar
3. Friesen, C., Legendre symbols and continued fractions, Acta. Arith. LIX(1991), 365379.Google Scholar
4. Halter-Koch, F., Prime-producing quadratic polynomials and class numbers of quadratic orders. In: Computational Number Theory, (Pethô, A.,Pohst, M., H.Williams, C. and H.Zimmer, G., eds.), Walter de Gruyter, Berlin (1991), 7382.Google Scholar
5. Hardy, G.H. and Littlewood, J.E., Some problems of partitio numerorium; HI: On the expression of a number as a sum of primes, Acta. Math. (1924), 170.Google Scholar
6. Hensley, D. and Richards, I., On the incompatibility of two conjectures concerning primes, Proc. Symp. in Pure Math., Analytic Number Theory (AMS) 24 (1973), 123127.Google Scholar
7. Hua, L.K., Introduction to number theory, Springer-Verlag (1982).Google Scholar
8. Kaplan, P. and Williams, K.S., The distance between ideals in orders of real quadratic fields, L'Enseignement Math. 36 (1990), 321358.Google Scholar
9. Lauchaud, G., Sur les corps quadratiques reels principaux, Séminaire de théorie de nombres; Paris 1984–85. Progress in Math. 63,165175.Google Scholar
10. Louboutin, S., Groupes des classes d'idéaux triviaux, Acta. Arith, LIV(1989), 6174.Google Scholar
11. Louboutin, S., Continued Fractions and Real Quadratic Fields, J. Number Theory, 30 (1988), 167176.Google Scholar
12. Louboutin, S., Prime producing quadratic polynomials and class numbers of real quadratic fields, Canad. J. Math. XLII(1990), 315341.Google Scholar
13. Louboutin, S., Extensions du Théorème de Frobenius-Rabinowitsch,C.R. Acad. Sci. Paris 1312 (1991),711714.Google Scholar
14. Lu, H., On the Class-Number of Real Quadratic Fields, Sci. Sinica, (Special issue) 2 (1979), 118130.Google Scholar
15. Mollin, R.A., Necessary and Sufficient Conditions for the Class Number of a Real Quadratic Field to be One and a Conjecture of Chowla S., Proc. Amer. Math. Soc. 102 (1988), 1721.Google Scholar
16. Mollin, R.A., Lower Bounds for Class Numbers of Real Quadratic and Biquadratic Fields, Proceed. Amer. Math. Soc. 101 (1987), 439444.Google Scholar
17. Mollin, R.A., Class Number One Criteria for Real Quadratic Fields I, Proc. Japan Acad. (A) 63 (1987), 121 -125.Google Scholar
18. Mollin, R.A., Class Number One Criteria for Real Quadratic Fields II, Proc. Japan Acad. (A) 63 (1987), 162- 164.Google Scholar
19. Mollin, R.A., On the Insolubility of a class diophantine equations and the non-triviality of the class number of related real quadratic fields ofRichaud-Degerttype, NagoyaMath. J. 105 (1987), 3947.Google Scholar
20. Mollin, R.A. and Williams, H.C., Computation of real quadratic fields with class number one, Advances in the theory of computation and computational math., to appear.Google Scholar
21. Mollin, R.A., Solution of the class number one problem for real quadratic fields of Richaud-Degert type (with one possible exception). In: Number Theory, Walter de Gruyter and Co., Berlin, (1990), (Mollin, R.A., éd.), 417425.Google Scholar
22. Mollin, R.A., Consecutive powers in continued fractions, Acta. Arith., to appear.Google Scholar
23. Mollin, R.A., Prime-producing polynomials and real quadratic fields of class number one. In: Number Theory, (Levesque, C. and DeKoninck, J.M. (eds.)), Walter de Gruyter and Co., (1989), 654663.Google Scholar
24. Mollin, R.A., Class Number one for real quadratic fields, continued fractions, and reduced ideals. In: Number Theory and Applications, (Mollin, R.A., ed.) NATO ASI, C265 (1989), 481496.Google Scholar
25. Mollin, R.A., Period four and real quadratic fields of class number one, Proc. Japan Acad. (A) 65 (1989), 8993.Google Scholar
26. Mollin, R.A., Class number problems for real quadratic fields. In: Number Theory and Cryptography, London Math. Soc. Lecture Note Series, 154 (1990), 177195.Google Scholar
27. Mollin, R.A., Real quadratic fields of class number one and continued faction period less than six, C.R. Math. Rep. Acad. Sci. Canada XI( 1989), 5156.Google Scholar
28. Mollin, R.A., Powers of two, continued fractions, and real quadratic fields of class number one, Memorial volume to Gauss, C.F. (Rassias, G. (ed.)), to appear.Google Scholar
29. Mollin, R.A., On prime valued polynomials and class numbers of real quadratic fields, Nagoya Math. J. 112 (1988), 143151.Google Scholar
30. Mollin, R.A., Affirmative solution of a conjecture related to a sequence of Shanks, Proc. Japan Acad. (A) 67 (1991), 7072.Google Scholar
31. Mollin, R.A., Continued fractions of period five and real quadratic fields of class number one, Acta. Arth. LVI(1990), 5563.Google Scholar
32. Mollin, R.A., Quadratic Residue Covers for Real Quadratic Fields, to appear.Google Scholar
33. Rabinowitsch, G., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratishen Zahlkorpern, Proc. Fifth Internat. Congress Math. (Cambridge) (1913), 418421.Google Scholar
34. Mollin, R.A., Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratishen Zahlkorpern, J. Rein. Angew. Math. 142 (1913), 153164.Google Scholar
35. Ricci, G., Ricerche arithmetiche suipolinomi, Rend. Circ. Math. Palermo 57 (1933), 433475.Google Scholar
36. Shanks, D., The infrastructure of real quadratic fields and its applications, Proc. 1972 number theory Conf., Boulder, CO (1973), 217224.Google Scholar
37. Tatuzawa, T., On a theorem of Siegel, Japan J. Math. 21 (1951), 163178.Google Scholar
38. Williams, H.C., Continued fractions and number theoretic computations, Rocky Mtn. J. Math. 15 (1985), 621655.Google Scholar
39. Williams, H.C. and Wunderlich, M.C., On the parallel generation of the residues for the continued fraction factoring algorithm, Math. Comp. 177 (1987), 405423.Google Scholar