Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T17:27:15.119Z Has data issue: false hasContentIssue false

The Classification of Algebras by Dominant Dimension

Published online by Cambridge University Press:  20 November 2018

Bruno J. Mueller*
Affiliation:
University of Mainz, Mainz, W. Germany, and McMaster University, Hamilton, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nakayama proposed to classify finite-dimensional algebras R over a field according to how long an exact sequence

of projective and injective R-R-bimodules Xi they allow. He conjectured that if there exists an infinite sequence of this type, then R must be quasi-Frobenius; and he proved this when R is generalized uniserial (17).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

References

1. Bass, H., Infective dimension in Noetherian rings, Trans. Amer. Math. Soc, 102 (1962), 1829.Google Scholar
2. Bourbaki, N., Elements de mathématique-. Algèbre (Paris, 1958), Chap. 8.Google Scholar
3. Cartan, H. and Eilenberg, S., Homologuai algebra (Princeton, 1956).Google Scholar
4. Curtis, C. W. and Jans, J. P., On algebras with a finite number of indecomposable modules, Trans. Amer. Math. Soc, 114 (1965), 122132.Google Scholar
5. Eckmann, B. und Schopf, A., Tiber injektive Moduln, Arch. Math., 4 (1953), 7578.Google Scholar
6. Eilenberg, S., Nagao, N., and Nakayama, T., On the dimension of modules and algebras IV, Nagoya Math. J., 10 (1956), 8795.Google Scholar
7. Jans, J. P., Projective infective modules, Pacific J. Math., 9 (1959), 11031108.Google Scholar
8. Jans, J. P., Some generalizations of finite projective dimension, Illinois J. Math., 5 (1961), 334344.Google Scholar
9. Kupisch, H., Symmetrische Algebren mit endlich vielen unzerlegbaren Darstellungen I, J. Reine Angew. Math., 219 (1965), 125.Google Scholar
10. Matlis, E., Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511528.Google Scholar
11. Mochizuki, H. Y., Finitistic global dimension for rings, Pacific J. Math., 15 (1965), 249258.Google Scholar
12. Mochizuki, H. Y., On the double commutator algebra of QF-3 algebras, Nagoya Math. J., 25 (1965), 221230.Google Scholar
13. Morita, K., Duality for modules and its applications to the theory of rings with minimum condition, Sci. Repts. Tokyo Kyoiku Daigaku, Sect. A, 6 (1958), 83142.Google Scholar
14. Morita, K., On algebras for which every faithful representation is its own second commutator, Math. Z., 69 (1958), 429434.Google Scholar
15. Morita, K., Category-isomorphisms and endomorphism rings of modules, Trans. Amer. Math. Soc, 108 (1962), 451469.Google Scholar
16. Nakayama, T., On Frobeniusean algebras II, Ann. of Math., J$ (1941), 121.10.2307/1968984CrossRefGoogle Scholar
17. Nakayama, T., On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 300307.Google Scholar
18. Tachikawa, H., A characterization of QF-3 algebras, Proc Amer. Math. Soc, 13 (1962), 701703; 14 (1963), 995.Google Scholar
19. Tachikawa, H., Qn dominant dimension of QF-3 algebras, Trans. Amer. Math. Soc, 112 (1964), 249266.Google Scholar
20. Thrall, R. M., Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc, 64 (1948), 173183.Google Scholar
21. Wall, D. W., Algebras with unique minimal faithful representations, Duke Math. J., 25 1958), 321329.Google Scholar