Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T16:56:34.219Z Has data issue: false hasContentIssue false

Classification of Reducing Subspaces of a Class of Multiplication Operators on the Bergman Space via the Hardy Space of the Bidisk

Published online by Cambridge University Press:  20 November 2018

Shunhua Sun
Affiliation:
Institute of Mathematics, Jiaxing University, Jiaxing, Zhejiang, 314001, P.R. China, e-mail: shsun@mail.zjxu.edu.cn
Dechao Zheng
Affiliation:
Department of Mathematics, Vanderbilt University, Nashville, TN 37240 USA, e-mail: dechao.zheng@vanderbilt.edu
Changyong Zhong
Affiliation:
Department of Mathematics and Statistics, Georgia State University Atlanta, GA 30303, USA, e-mail: matcyz@langate.gsu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we obtain a complete description of nontrivial minimal reducing subspaces of the multiplication operator by a Blaschke product with four zeros on the Bergman space of the unit disk via the Hardy space of the bidisk.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Baker, I., Deddens, J., and Ullman, J., A theorem on entire functions with applications to Toeplitz operators. Duke Math. J. 41(1974), 739–745. doi:10.1215/S0012-7094-74-04177-5Google Scholar
[2] Ball, J., Hardy space expectation operators and reducing subspaces. Proc. Amer. Math. Soc. 47(1975), 351–357. doi:10.2307/2039745Google Scholar
[3] Bercovici, H., Foias, C., and Pearcy, C., Dual Algebras with Applications to Invariant Subspaces and Dilation Theory. CB MS Regional Conference Series in Mathematics 56. American Mathematical Society, Providence, RI, 1985.Google Scholar
[4] Brown, A., On a class of operators. Proc. Amer. Math. Soc. 4(1953), 723–728. doi:10.2307/2032403Google Scholar
[5] Douglas, R. and Paulsen, V., Hilbert Modules over Function Algebras. Pitman Research Notes in Mathematics Series 217. Longman Scientific and Technical, Harwich, 1989.Google Scholar
[6] Douglas, R. and Yang, R., Operator theory in the Hardy space over the bidisk. I. Integral Equations Operator Theory 38(2000), no. 2, 207–221. doi:10.1007/BF01200124Google Scholar
[7] Ferguson, S. and Rochberg, R., Higher order Hilbert-Schmidt Hankel forms and tensors of analytic kernels. Math. Scand. 96(2005), no. 1, 117–146.Google Scholar
[8] Ferguson, S. and Rochberg, R., Description of certain quotient Hilbert modules. In: Operator Theory 20. Theta Ser. Adv. Math. 6. Theta, Bucharest, 2006, pp. 93–109.Google Scholar
[9] Guo, K., Sun, S., Zheng, D., and Zhong, C., Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. Reine Angew. Math, 628(2009), 129–168.Google Scholar
[10] Halmos, P., Shifts on Hilbert spaces. J. Reine. Angew. Math. 208(1961) 102–112.Google Scholar
[11] Nordgren, E., Reducing subspaces of analytic Toeplitz operators. Duke Math. J. 34(1967), 175–181. doi:10.1215/S0012-7094-67-03419-9Google Scholar
[12] Richter, S., On Invariant Subspaces of Multiplication Operators on Banach Spaces of Analytic Functions. Ph.D. dissertation, University of Michigan, 1986.Google Scholar
[13] Stephenson, K., Analytic functions of finite valence, with applications to Toeplitz operators. Michigan Math. J. 32(1985), no. 1, 5–19. doi:10.1307/mmj/1029003127Google Scholar
[14] Stessin, M. and Zhu, K., Reducing subspaces of weighted shift operators. Proc. Amer. Math. Soc. 130(2002), no. 9, 2631–2639. doi:10.1090/S0002-9939-02-06382-7Google Scholar
[15] Stessin, M. and Zhu, K., Generalized factorization in Hardy spaces and the commutant of Toeplitz operators. Canad. J. Math. 55(2003), no. 2, 379–400.Google Scholar
[16] Sun, S., Zheng, D. and Zhong, C., Multiplication operators on the Bergman space and weighted shifts. J. Operator Theory 59(2008), no. 2, 435–454.Google Scholar
[17] Walsh, J., On the location of the roots of the Jacobian of two binary forms, and of the derivative of a rational function. Trans. Amer. Math. Soc. 19(1918), no. 3, 291–298. doi:10.2307/1988954Google Scholar
[18] Yang, R., Operator theory in the Hardy space over the bidisk. III. J. Funct. Anal. 186(2001), 521–545. doi:10.1006/jfan.2001.3799Google Scholar
[19] Yang, R., Operator theory in the Hardy space over the bidisk. II. Integral Equations Operator Theory 42(2002), 99–124. doi:10.1007/BF01203024Google Scholar
[20] Yang, R., The core operator and congruent submodules. J. Funct. Anal. 228(2005), 469–489. doi:10.1016/j.jfa.2005.06.022Google Scholar
[21] Zhu, K., Reducing subspaces for a class of multiplication operators. J. London Math. Soc. 62(2000), 553–568. doi:10.1112/S0024610700001198Google Scholar