Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T19:32:00.978Z Has data issue: false hasContentIssue false

Closed Ideals in a Convolution Algebra of Holomorphic Functions

Published online by Cambridge University Press:  20 November 2018

Rainer Brück
Affiliation:
Mathematisches Institut, Justus-Liebig- Universität Gieβen, Arndtstraβe,2 D-35392 Gieβen, Germany e-mail: rainer.brueck@math.uni-giessen.de
Jürgen Müller
Affiliation:
Fachbereich IV, Mathematik, Universität Trier, D-54286 Trier, Germany e-mail: jmueller@mapc64. uni-trier.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the usual topological vector space H(G) of all functions holomorphic in a region G ⊂ ℂ. If G satisfies certain conditions, it is possible to introduce the Hadamard product as multiplication in H(G), and then H(G) turns out to be a commutative topological algebra. In [5] we characterized the invertible elements in H(G), and the aim of this paper is to study the closed ideals and some further questions.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

1. Arakelyan, N.U., On efficient analytic continuation of power series, Math. USSR-Sb. (English trans.), 52(1985), 2139.Google Scholar
2. Bieberbach, L., Analytische Fortsetzung, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1955.Google Scholar
3. R, R. Boas, Jr., Entire Functions, Academic Press, New York, San Francisco, London, 1954.Google Scholar
4. Brooks, R.M., A ring of analytic functions, Studia Math. 24(1964), 191210.Google Scholar
5. Briick, R. and Müller, J., Invertible elements in a convolution algebra of holomorphic functions, Math. Ann. 294(1992), 421438.Google Scholar
6. Carlson, F., Sur une classe de séries de Taylor, Thesis, Uppsala, 1914.Google Scholar
7. Hadamard, J., Théorème sur les séries entières, Acta Math. 22(1899), 5563.Google Scholar
8. Hornfeck, B., Algebra, 3. Auflage, Walter de Gruyter & Co., Berlin, New York, 1976.Google Scholar
9. Müller, J., Über analytische Fortsetzung mit Matrixverfahren, Mitt. Math. Sem. Giessen 199(1990), 190.Google Scholar
10. Müller, J., The Hadamard multiplication theorem and applications in summability theory, Complex Variables Theory Appl. 18(1992), 155166.Google Scholar
11. Pôlya, G., Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Z. 29(1929), 549640.Google Scholar
12. Müller, J., Untersuchungen über Lücken und Singularitäten von Potenzreihen. Zweite Mitteilung, Ann. of Math. 34(1933), 731777.Google Scholar
13. Porcelli, R., Linear Spaces of Analytic Functions, Rand McNally and Co., Chicago, 1966.Google Scholar
14. Raševskiĭ, P.K., Closed ideals in a countably normed algebra of analytic entire functions, Soviet Math. Dokl. 6(1965), 717719.Google Scholar
15. Remmert, R., Funktionentheorie II, Springer-Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
16. von, M. Renteln, Idéale in Ringen ganzer Funktionen endlicher Ordnung, Mitt. Math. Sem. Giessen 95(1972), 152.Google Scholar