Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T17:20:58.417Z Has data issue: false hasContentIssue false

A Coefficient Problem for Functions Regular in an Annulus

Published online by Cambridge University Press:  20 November 2018

M. S. Robertson*
Affiliation:
Rutgers University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction A solution will be given in this paper for the following problem.

Let

(1.1)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1952

References

1. Dieudonné, J., Recherches sur quelques problémes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Ann. École Normale (3), vol. 48 (1931), 247358.Google Scholar
2. Goodman, A. W., On some determinants related to p-valent functions, Trans. Amer. Math. Soc, vol. 63 (1948), 175192.Google Scholar
3. Goodman, A. W. and Robertson, M. S., A class of multivalent functions, Trans. Amer. Math. Soc, vol. 70 (1951), 127136.Google Scholar
4. Kakeya, S., On the function whose imaginary part on the unit circle changes its sign only twice, Proc. Imp. Acad. Tokyo, vol. 18 (1942), 435439.Google Scholar
5. Robertson, M. S., Analytic functions star-like in one direction, Amer. J. Math., vol. 58 (1936), 465472.Google Scholar
6. Robertson, M. S., A representation of all analytic functions in terms of functions with positive real parts, Ann. Math., vol. 38 (1937), 770783.Google Scholar
7. Robertson, M. S., The variation of the sign of V for an analytic function U + iV, Duke Math. J., vol. 5 (1939), 512519.Google Scholar
8. Rogosinski, W., Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z., vol. 35 (1932), 93121.Google Scholar
9. Szász, O., Über Funktionen, die den Einheitskreis schlicht abbilden, Jber. dtsch. MatVer. vol. 42 (1932), 7375.Google Scholar