Published online by Cambridge University Press: 20 November 2018
R. N. Ball (unpublished) and G. E. Davis and C. D. Fox [1] established that if Ω is a doubly homogeneous totally ordered set, the l-group A (Ω) of all orderpreserving permutations of Ω endures a compatible tight Riesz order. Specifically T = {g ∈ A(Ω)+ : supp (g) is dense in Ω} is a compatible tight Riesz order for A(Ω). Using this fact, I inserted Theorem 3.7 into [2; MR 53 (1977), #13070] at the galley proof stage. (It was also included in MR 54 (1977), #7350 and [3; p. 472].) Theorem 3.7 stated: Let Ω be homogeneous. Then A(Ω) endures a compatible tight Reisz order if and only if Ω is dense. I stated that it was obvious that if Ω were homogeneous and discrete, A(Ω) could not endure a compatible tight Riesz order. This “obvious” is neither obvious nor true.