No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let ƒ : X → Y be a map and let e′: Y → ΩΣY be the usual embedding. Then we prove the following results.
Theorem 1. cat ƒ = cat(e′ƒ), w cat ƒ = w cat(e′ƒ) if Y is an H-space.
Theorem 2. conil ƒ = w Σ cat(e′ƒ) ≦ Σ w cat(e′ƒ) ≦ w cat(e′ƒ), where Σ the suspension functor. If we take X = Y and ƒ= lx, this result yields conil X ≦ w cat e', a result due to Ganea, Hilton, and Peterson(4).
Theorem 3. Suppose that Y is (m– 1)-connected and
Then conil ƒ = w Σ cat (e′ƒ) = Σ w cat(e′ƒ) = w cat(e′ƒ).