No CrossRef data available.
Article contents
Covering Theorems for Classes of Univalent Functions
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let denote the class of functions f(z) = z + that are analytic and univalent in and will denote the collection of f ∈ that map U onto a domain that is respectively starlike with respect to the origin and convex.
In [4, p. 85] Hayman used Steiner symmetrization to solve a problem, a special case of which is the following.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1973
References
1.
Aharonov, D. and Kirwan, W. E., A method of symmetrization and applications, Trans Amer. Math. Soc. (to appear).Google Scholar
2.
Aharonov, D. and Kirwan, W. E., A method of symmetrization and applications, II (to appear).Google Scholar
3.
Frantz, W. and Kratzer, A., Tranzendente Functionen (Akademische Verlagsgesellschaft, Leipzig, 1960).Google Scholar
4.
Hayman, W. K., Multivalent functions (Cambridge University Press, Cambridge, 1958).Google Scholar
5.
Jenkins, J. A., On values omitted by univalent functions, Amer. J. Math.
2 (1953), 406–408.Google Scholar
6.
Klein, M., Estimates for the transfinite diameter with applications to conformai mapping, Pacific J. Math.
22 (1967), 267–279.Google Scholar
7.
Lewandowski, Z., On circular symmetrization of starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A
17 (1963), 35–37.Google Scholar
8.
Löwner, K., Untersuchengen über die Verzerrung bei konformen Abbildungen des Einheitskreises, die durch Functionen mit nicht Verschwindender Ableitung geliefert werden, Berichte Könige. Sachs. Ges. Wissen, Leipzig
69 (1917), 89–106.Google Scholar
10.
Strohhäcker, E., Beiträgezur Théorie der Schlichten Functionen, Math. Z.
37 (1933), 356–380.Google Scholar
You have
Access