Hostname: page-component-54dcc4c588-ff9ft Total loading time: 0 Render date: 2025-10-03T23:16:07.127Z Has data issue: false hasContentIssue false

The dichotomy spectrum approach for a global nonuniform asymptotic stability problem: Triangular case via uniformization

Published online by Cambridge University Press:  12 September 2025

Álvaro Castañeda*
Affiliation:
Departamento de Matemáticas, https://ror.org/047gc3g35 Universidad de Chile , Casilla 653, Santiago 7800024, Chile
Ignacio Huerta
Affiliation:
Departamento de Matemática, https://ror.org/05510vn56 Universidad Técnica Federico Santa María , Casilla 110-V, Valparaíso 2340000, Chile e-mail: ignacio.huertan@usm.cl grobledo@uchile.cl
Gonzalo Robledo
Affiliation:
Departamento de Matemáticas, https://ror.org/047gc3g35 Universidad de Chile , Casilla 653, Santiago 7800024, Chile

Abstract

We introduce a new conjecture of global asymptotic stability for nonautonomous systems, which is fashioned along the nonuniform exponential dichotomy spectrum and whose restriction to the autonomous case is related to the classical Markus–Yamabe Conjecture: we prove that the conjecture is fulfilled for a family of triangular systems of nonautonomous differential equations satisfying boundedness assumptions. An essential tool to carry out the proof is a necessary and sufficient condition ensuring the property of nonuniform exponential dichotomy for upper block triangular linear differential systems. We also obtain some byproducts having interest on itself, such as the diagonal significance property in terms of the above-mentioned spectrum.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author was funded by FONDECYT Regular Grant 1240361. The second author was funded by FONDECYT POSTDOCTORAL Grant 3210132. The third author was funded by FONDECYT Regular Grant 1210733.

References

Barreira, L. and Valls, C., Stability of nonautomous differential equations, Lecture Notes in Mathematics, Springer, Berlin, 2008.Google Scholar
Barreira, L. and Valls, C., Tempered exponential behavior for a dynamics in upper triangular form . Electron. J. Qual. Theory Differ. Equ. 2018(2018), Article no. 77, 22 pp.Google Scholar
Battelli, F., Franca, M., and Palmer, K. J., Exponential dichotomy for noninvertible linear difference equations . J. Differ. Equ. Appl. 27(2021), 16571691.Google Scholar
Battelli, F. and Palmer, K., Criteria for exponential dichotomy for triangular systems . J. Math. Anal. Appl. 428(2015), 525543.Google Scholar
Castañeda, Á. and Guíñez, V., Some results about global asymptotic stability . Qual. Theory Dyn. Syst. 12(2013), 427441.Google Scholar
Castañeda, Á., Huerta, I., and Robledo, G.. An application to the study of polynomial automorphisms via a nonuniform global stability problem. Preprint, arxiv.org/abs/2108.06416.Google Scholar
Castañeda, Á. and Robledo, G., A spectral dichotomy version of the nonautonomous Markus–Yamabe conjecture . J. Differ. Equ. 268(2020), 45444554.Google Scholar
Cheban, D., Markus-Yamabe conjecture for non-autonomous dynamical systems . Nonlinear Anal. 95(2014), 202218.Google Scholar
Chu, J., Liao, F., Siegmund, S., Xia, Y., and Zhang, W., Nonuniform dichotomy spectrum and reducibility for nonautonomous equations . Bull. Sci. Math. 139(2015), 538557.Google Scholar
Cima, A., Gasull, A., and Mañosas, F., A polynomial class of Markus-Yamabe counterexamples . Publ. Mat. 41(1997), 85100.Google Scholar
Cima, A., van den Essen, A., Gasull, A., Hubbers, E., and Mañosas, F., A polynomial counterexample to the Markus-Yamabe conjecture . Adv. Math. 131(1997), 453457.Google Scholar
Dieci, L. and Van Vleck, E. S., Lyapunov and Sacker–Sell spectral intervals . J. Dyn. Differ. Equ. 19(2009), 265293.Google Scholar
Dragičević, D., Admissibility and polynomial dichotomies for evolution families . Commun. Pure Appl. Anal. 19(2020), 13211336.Google Scholar
Dragičević, D. and Palmer, K. J., Dichotomies for triangular systems via admissibility . J. Dyn. Differ. Equ. 37(2025), 19791996.Google Scholar
Dragičević, D., Zhang, W., and Zhang, W., Smooth linearization of nonautonomous differential equations with a nonuniform dichotomy . Proc. Lond. Math. Soc. 121(2020), 3250.Google Scholar
Feßler, R., A proof of the two dimensional Markus–Yamabe stability conjecture . Ann. Polon. Math. 62(1995), 4575.Google Scholar
Glutsyuk, A. A., The complete solution of the Jacobian problem for vector fields on the plane . Commun. Moscow Math. Soc., Russian Math. Surv. 49(1994), 185186.Google Scholar
Guíñez, V. and Castañeda, Á., A polynomial class of Markus-Yamabe counterexamples and examples in ${\mathbb{R}}^3$ . Appl. Anal. 90(2011), 787798.Google Scholar
Gutiérrez, C., A solution to the bidimensional global asymptotic stability conjecture . Ann. Inst. H. Poincaré Anal. Non Linéaire 12(1995), 627671.Google Scholar
Hartman, P., Ordinary differential equations,Wiley, New York, NY, 1964.Google Scholar
Huerta, I., Spectral view of Hartman-Grobman’s theorem for nonuniform and unbounded hyperbolic flows. Ph.D. thesis, Universidad de Santiago de Chile, 2019.Google Scholar
Karafyllis, I. and Tsinias, J., A Converse Lyapunov theorem for nonuniform in time global asymptotic stability and its application to stabilization . SIAM J. Control. Optim. 42(2003), 936965.Google Scholar
Khalil, H., Nonlinear systems, Prentice Hall, Upper Saddle River, NJ, 1996.Google Scholar
Llibre, J. and Menezes, L. de A. S., The Markus-Yamabe conjecture does not hold for discontinuous piecewise linear differential systems separated by one straight line . J. Dyn. Differ. Equ. 33(2021), 659676.Google Scholar
Llibre, J. and Zhang, X., The Markus-Yamabe conjecture for continuous and discontinuous piecewise linear differential systems . Proc. Am. Math. Soc. 149(2021), 52675274.Google Scholar
Mañosas, F. and Peralta-Salas, D., Note on the Markus-Yamabe conjecture for gradient dynamical systems . J. Math. Anal. Appl. 322(2006), 580586.Google Scholar
Markus, L. and Yamabe, H., Global stability criteria for differential systems . Osaka Math. J. 12(1960), 305317.Google Scholar
Massera, J. L., On Liapounoff’s conditions of stability . Ann. Math. 50(1949), 705721.Google Scholar
Palmer, K. J., Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations . J. Differ. Equ. 46(1982), 324345.Google Scholar
Pesin, J. B., Families of invariant manifolds corresponding to nonzero characteristic exponents . Math. USSR-Izv. 10(1976), 12611305.Google Scholar
Pötzsche, C., Dichotomy spectra of triangular equations . Discrete Contin. Dyn. Syst. 36(2016), 423450.Google Scholar
Rodrigues, H. M., Teixeira, M. A., and Gameiro, M., On exponential decay and the Markus-Yamabe conjecture in infinite dimensions with applications to the Cima system . J. Dyn. Differ. Equ. 30(2018), 11991219.Google Scholar
Rugh, W. J., Linear systems theory, Prentice Hall, Upper Saddle River, NJ, 1996.Google Scholar
Silva, C. M., Nonuniform $\mu {-}$ dichotomy spectrum and kinematic similarity . J. Differ. Equ. 375(2023), 618652.Google Scholar
Sontag, E., Mathematical control theory, deterministic finite dimensional systems, Springer, New York, NY, 1998.Google Scholar
Tien, L. H., Nhien, L. D., and Chien, T. V., Nonuniform exponential dichotomy for block triangular systems on the half line . J. Nonlinear Sci. Appl. 13(2020), 8596.Google Scholar
Vidyasagar, M., Nonlinear systems analysis, SIAM, Philadelphia, PA, 2002.Google Scholar
Zhang, X., Nonuniform dichotomy spectrum and normal forms for nonautonomous differential systems . J. Funct. Anal. 267(2014), 18891916.Google Scholar
Zhang, Y. and Yang, X–S.. Dynamics analysis of Llibre-Menezes piecewise linear systems . Qual. Theory Dyn. Syst. 21(2022), Article no. 11, 25 pp.Google Scholar
Zhou, B., Stability analysis of non–linear time–varying systems by Lyapunov functions with indefinite derivatives . IET Control Theory Appl. 11(2017), 14341442.Google Scholar
Zhou, L., Lu, K., and Zhang, W., Equivalences between nonuniform exponential dichotomy and admissibility . J. Differ. Equ. 262(2017), 682747.Google Scholar
Zhu, H. and Li, Z., Nonuniform dichotomy spectrum intervals: Theorem and computation . J. Appl. Anal. Comput. 9(2019), 11021119.Google Scholar