Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T04:09:53.818Z Has data issue: false hasContentIssue false

Differential Equations of Non-Integer Order

Published online by Cambridge University Press:  20 November 2018

J. H. Barrett*
Affiliation:
University of Delaware
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In §1, we define a differential-integral operator, which for positive real indices is commonly known as the Liouville-Riemann generalized integral. For positive integer indices, we obtain an iterated integral. For negative real indices we obtain the Riemann-Holmgren (5; 9) generalized derivative, which for negative integer indices gives the ordinary derivative of order corresponding to the negative of such an integer. Following M. Riesz (10) we extend these ideas to include complex indices.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. Bôcher, M., Introduction to the study of integral equations (Cambridge Tract, no. 10, Cambridge, 1909).Google Scholar
2. Darboux, G., Leçons sur la théorie générale des surfaces, 2e éd., vol. II (Paris, 1914-1915).Google Scholar
3. Davis, H. T., Fractional operations as applied to a class of Volterra integral equations. Amer. J. Math., 46 (1924), 95–109.Google Scholar
4. Hardy, G. H., Notes on some points in the integral calculus. Messenger of Math., 47 (1918), 145–150.Google Scholar
5. Holmgren, H. J., Om differentialkalkylen med indices of hvad nature sam heist, Kongliga Svenska Vetenskaps-Akademiens Handlinger (5), 11 (1864), 1–83.Google Scholar
6. McShane, E. J., Integration (Princeton, 1944).Google Scholar
7. Mittag-Leffler, G., Sur la représentation analytique d'une branche uniforme d'une function monogéne, (cinquième note), Acta. Math., 29 (1904), 130–142.Google Scholar
8. Post, E. L., Discussion of the solution of (d/dx)½ y = y/x, Amer. Math. Monthly, 26 (1919), 37–39.Google Scholar
9. Riemann, B., Gesammelte Mathematische Werke (Leipzig, 1876).Google Scholar
10. Riesz, Marcel, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81 (1949), 1-218.Google Scholar
11. Tricomi, F., Suite equazioni lineari aile derivate parzial di 2° or dine, di tipo misto, Atti Delia Rea le Accademia dei Lincie (5), Memorie d'lia di Scienze Fisiche Matematiche e Naturali, 14 (1923), 134–247.Google Scholar
12. Wiman, A., Ueber die Nullstellen der Funktionen Eα(x), Acta Math., 29 (1905), 217–230.Google Scholar