No CrossRef data available.
Article contents
Diffusion on Lie Groups
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The heat kernel of an amenable Lie group satisfies either pt ~ exp(—ct1/3) or pt ~ t-a as t → ∞. We give a condition on the Lie algebra which characterizes the two cases.
Résumé
Pour le noyau de la chaleur sur un groupe de Lie moyennable on a soit pt ~ exp(—ct1/3), soit pt ~ t-a (lorsque t → ∞). On donne une condition sur l'algèbre de Lie qui caractérise les deux cas
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1994
References
2.
Varopoulos, N. Th., Saloff-Coste, L. and Coulhon, T., Analysis and Geometry on groups, Cam. Univ. Press, 1992.Google Scholar
4.
Varadarajan, V. S., Lie groups, Lie algebras and their representations, Prentice-Hall.Google Scholar
5.
Reiter, H., Classical harmonic analysis and locally compact groups, Oxford Math. Monograph, 1968.Google Scholar
6.
Varopoulos, N. Th., Potential Theory on non unimodulargroups, Harmonic Analysis and discrete Potential Theory, Plenum (1992), to appear.Google Scholar
7.
Varopoulos, N. Th., Small Time Gaussian Estimates of Heat Diffusion Kernels, II: The Theory of Large Deviations, J. Funct. Analysis
93(1990), 1–33.Google Scholar
8.
Varopoulos, N. Th., A Potential Theoretic Property of Soluble Groups, Bull. Sc. Math, 2e série
108(1983), 263–273.Google Scholar
9.
Alexopoulos, G., Fonctions harmoniques bornées sur les groupes résolubles, C.R. Acad. Sci.
Paris 305 (1987), 777–779.Google Scholar
10.
Alexopoulos, G.,A lower estimate for central probability on polycyclic groups, Can. J. Math.
44(1992), 897–910.Google Scholar
11.
Varopoulos, N. Th., Groups of sup erpolynomial growth, Proceedings of the I.C.M. satellite conference on Harmonic Analysis, Springer Verlag, 1991.Google Scholar
You have
Access