Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T21:51:37.479Z Has data issue: false hasContentIssue false

Divisible Properties and the Stone-Čech Compactification

Published online by Cambridge University Press:  20 November 2018

S. Glasner*
Affiliation:
Tel-Aviv University, Tel-Aviv, Israel
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let T be an abelian infinite countable group. We say that a property of subsets of T is divisible if it satisfies the following requirements. (We identify with the set of all subsets of T which satisfy .)

  1. (i) ∅ ∉ and T

  2. (ii) A and BA implies B

  3. (iii) A and A = B1B2 implies that either B1 or B2 is in

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Drury, S., Sur les ensembles de Sidon, C. R. Acad. Sci. Paris 271, Séries A (1970), 162163.Google Scholar
2. Deuber, W., Partitionen und lineare Gleichungs-système, Math Zeitschrift 133 (1973), 109123.Google Scholar
3. Ellis, R., Lectures on topological dynamics (Benjamin, New York, 1969).Google Scholar
4. Ellis, R. and Keynes, H., Bohr compactifications anda result of Følner, Israel J. Math. 12 (1972), 314330.Google Scholar
5. Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, Jour. d'Analyse Math 31 (1977), 204256.Google Scholar
6. Furstenberg, H. and Weiss, B., Topological dynamics and combinatorial number theory, to appear.CrossRefGoogle Scholar
7. Glasner, S., Proximal flows, Lecture Notes in Math 517 (Springer-Verlag, 1976).CrossRefGoogle Scholar
8. Hartman, S. and Ryll-Nardzewski, , Almost periodic extensions of functions, Coll. Math. 12(1964), 2339.Google Scholar
9. Kahane, J. P., Ensembles des Ryll-Nardzewski et ensembles de Kelson, Colloq. Math. 15 (1966), 8792.Google Scholar
10. Katznelson, Y., Sequences of integers dense in the Bohr group, Proc. Roy. Inst, of Tech. (June, 1973), 7986.Google Scholar
11. Knapp, W. A., Functions behaving like almost automorphic functions, Topological Dynamics, Int. Symp. Editors J. Anslander and W. H. Gottschalk (1968), 299317.Google Scholar
12. Ryll-Nardzewski, , Concerning almost periodic extensions of functions, Colloc. Math. 12 (1964), 235237.Google Scholar
13. Strezelecki, E., On a problem of interpolation by periodic functions, Colloq. Math. 11 (1963), 9199.Google Scholar
14. Veech, W. A., Minimal sets and Souslin sets, Recent advances in Topological Dynamics (Proc. Conf., Yale Univ., 1972), Lecture Notes in Math. 318 (Springer-Verlag, 1973), 253266.Google Scholar
15. Veech, W. A., The equicontinuous structure relation for minimal abelian transformation groups, Amer. J. Math. 90 (1968), 723732.Google Scholar
16. Veech, W. A., Generalizations of almost periodic functions, unpublished notes.Google Scholar