Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T14:15:41.018Z Has data issue: false hasContentIssue false

Dual Creation Operators and a Dendriform Algebra Structure on the Quasisymmetric Functions

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dual immaculate functions are a basis of the ring QSym of quasisymmetric functions and form one of the most natural analogues of the Schur functions. The dual immaculate function corresponding to a composition is a weighted generating function for immaculate tableaux in the same way as a Schur function is for semistandard Young tableaux; an immaculate tableau is defined similarly to a semistandard Young tableau, but the shape is a composition rather than a partition, and only the first column is required to strictly increase (whereas the other columns can be arbitrary, but each row has to weakly increase). Dual immaculate functions were introduced by Berg, Bergeron, Saliola, Serrano, and Zabrocki in arXiv:1208.5191, and have since been found to possess numerous nontrivial properties.

In this note, we prove a conjecture of M. Zabrocki that provides an alternative construction for the dual immaculate functions in terms of certain “vertex operators”. The proof uses a dendriform structure on the ring QSym; we discuss the relation of this structure to known dendriform structures on the combinatorial Hopf algebras FQSym and WQSym.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[AFNT113] Aval, J.-C., Féray, V., Novelli, J.-C., and Thibon, J.-Y., Quasi-symmetric functions as polynomial functions on Young diagrams. J. Algebraic Combin. 41 (2015), no. h, 669706. http://dx.doi.org/10.1007/s10801-014-0549-y Google Scholar
[BBSSZ13a] Berg, C., Bergeron, N., Saliola, F., Serrano, L., and Zabrocki, M., A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canad. J. Math. 66(2014), no. 3, 525565. http://dx.doi.Org/10.4153/CJM-2O13-013-0 Google Scholar
[BBSSZ13b] Berg, C., Multiplicative structures of the immaculate basis of non-commutative symmetric functions. arxiv:1305.4700v2Google Scholar
[BBSSZ13c] Berg, C., Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Amer. Math. Soc. 143(2015), 9911000. http://dx.doi.Org/10.1090/S0002-9939-2014-12298-2 Google Scholar
[BSOZ13] Bergeron, N., Sánchez-Ortega, J., and Zabrocki, M., The pieri rule for dual immaculate quasi-symmetric functions. preprint arxiv:1307.4273v3Google Scholar
[BerZabO5] Bergeron, N. and Zabrocki, M., The Hopf algebras of symmetric functions and quasi symmetric functions in non-commutative variables are free and cofree. J. Algebra Appl. 8(2009), no. 4, 581600. http://dx.doi.Org/10.1142/S0219498809003485Google Scholar
[EbrFarO8] Ebrahimi-Fard, K. and Manchon, D., Dendriform equations. J. Algebra 322(2009), no. 11,40534079. doi=10.1016/j.jalgebra.2009.06.002Google Scholar
[Foissy07] Foissy, L., Bidendriform bialgebras, trees, and free quasi-symmetric functions. J. Pure Appl.Algebra 209(2007), no. 2, 439459. http://dx.doi.Org/10.1016/j.jpaa.2OO6.O6.OO5 Google Scholar
[FoiMall4] Foissy, L. and Malvenuto, C., The Hopf algebra of finite topologies and T-partitions. J. Algebra 438(2015), 130169. http://dx.doi.Org/10.1016/j.jalgebra.2O15.04.024 Google Scholar
[GKLLRT95] Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. S., and Thibon, J.-Y.,Non-commutative symmetric functions. Adv. Math. 112(1995), no 2., 218348. http://dx.doi.Org/10.1006/aima.1995.1032 Google Scholar
[Gessel84] Gessel, I. M., Multipartite P-partitions and inner products of skew Schur functions. In: Combinatorics and algebra (Boulder, Colo., 1983), Contemp. Math., 34, Amer. Math. Soc, Providence, RI, 1984, pp. 289301. http://dx.doi.Org/10.1090/conm/034/777705 Google Scholar
[GriReil5] Grinberg, D. and Reiner, V., Hopf algebras in combinatorics. arxiv:1409.8356v3Google Scholar
[HaGuKilO] Hazewinkel, M., Gubareni, N., and Kirichenko, V. V., Algebras, rings and modules: Lie algebras and Hopf algebras. Mathematical Surveys and Monographs, 168, Americal Mathematical Society, Providence, RI, 2010. http://dx.doi.Org/10.1090/surv/168 Google Scholar
[MeNoThll] Menous, F., Novelli, J.-C., and Thibon, J.-Y., Mould calculus, polyhedral cones, and characters of combinatorial Hopf algebras. Adv. in Appl. Math. 51(2013), no. 2,177227. http://dx.doi.Org/10.1016/j.aam.2013.02.003 Google Scholar
[NoThi05] Menous, F., Construction of dendriform trialgebras. C. R. Acad. Sci. Paris, 342(2006), no. 6, 362369. http://dx.doi.Org/10.1016/j.crma.2006.01.009 Google Scholar
[Stanle99] Stanley, R. P., Enumerative combinatorics, volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999. http://dx.doi.Org/10.1017/CBO9780511609589 Google Scholar
[ZinbielO] Zinbiel, G. W., Encyclopedia of types of algebras 2010. In: Operads and universal algebra,Nankai Ser. Pure Appl. Math.Theoret. Phys., World Sci. Publ., Hackensack, NJ, 2012.http://dx.doi.org/10.1142/9789814365123_0011 Google Scholar