Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T00:51:25.791Z Has data issue: false hasContentIssue false

Equivalent Formulations of the Borsuk-Ulam Theorem

Published online by Cambridge University Press:  20 November 2018

Philip Bacon*
Affiliation:
University of Florida
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let denote a space consisting of just one point and for each positive integer n let Rn denote euclidean n-space. For each non-negative integer n let Sn denote the n-sphere

In 1933 K. Borsuk published proofs of the following two theorems (2, p. 178).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Alexandroff, P. and Hopf, H., Topologie I (Ann. Arbor, Michigan, 1945).Google Scholar
2. Borsuk, K., Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177190.Google Scholar
3. Conner, P. E. and Floyd, E. E., Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc, 66 (1960), 416441.Google Scholar
4. Fan, K., A generalization of Tucker's combinatorial lemma with topological applications, Ann. of Math., 56 (1952), 431437.Google Scholar
5. Fan, K., Combinatorial properties of certain simplicial and cubical vertex maps, Arch. Math., 11, (1960), 368377.Google Scholar
6. Hadwiger, H., Elementare Kombinatorik und Topologie, Elem. Math., 15 (1960), 4960.Google Scholar
7. Jaworowski, J. W., On antipodal sets on the sphere and on continuous involutions, Fund. Math., 43 (1956), 241254.Google Scholar
8. Lusternik, L. and Schnirelmann, L., Topological methods in the calculus of variations (Moscow, 1930).Google Scholar
9. Tucker, A. W., Some topological properties of disk and sphere, Proc. First Canad. Math. Congress (Montreal, 1945), 285309.Google Scholar
10. Yang, C. T., On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson, I, Ann. of Math., 60 (1954), 262282.Google Scholar
11. Yang, C. T., On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson, II, Ann of Math., 62 (1955), 271283.Google Scholar