Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T08:31:31.027Z Has data issue: false hasContentIssue false

Examples and Questions in the Theory of Fixed Point Sets

Published online by Cambridge University Press:  20 November 2018

John R. Martin
Affiliation:
University of Saskatchewan, Saskatoon, Saskatchewan
Sam B. Nadler Jr.
Affiliation:
University of Saskatchewan, Saskatoon, Saskatchewan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All spaces considered in this paper will be metric spaces. A subset A of a space X is called a fixed point set of X if there is a map (i.e., continuous function) ƒ: XX such that ƒ(x) = x if and only if xA. In [22] L. E. Ward, Jr. defines a space X to have the complete invariance property (CIP) provided that each of the nonempty closed subsets of X is a fixed point set of X. The problem of determining fixed point sets of spaces has been investigated in [14] through [20] and [22]. Some spaces known to have CIP are n-cells[15], dendrites [20], convex subsets of Banach spaces [22], compact manifolds without boundary [16], and a class of polyhedra which includes all compact triangulable manifolds with or without boundary [18].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Anderson, R. D. and Choquet, Gustave, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), 347353.Google Scholar
2. Andrews, J. J., A chainable continuum no two of whose nondegenerate subcontinua are homeomorphic, Proc. Amer. Math. Soc. 12 (1961), 333334.Google Scholar
3. Bing, R. H., A homogeneous indecomposable plane continuum, Duke Math. J.. 15 (1948), 729742.Google Scholar
4. Bing, R. H., The elusive fixed point property, Amer. Math. Monthly. 76 (1969), 119132.Google Scholar
5. Borsuk, K., Theory of retracts, Monografie Matematyczne, vol. 44 (Polish Scientific Publishers, Warszawa, Poland, 1967).Google Scholar
6. Brown, R. F., The Lefschetz fixed point theorem (Scott, Foresman and Co., Glenview, III., 1971).Google Scholar
7. Cornette, J. L., Retracts of the pseudo-arc, Colloquium Math.. 19 (1968), 235239.Google Scholar
8. Gleason, A. M., Arcs in locally compact groups, Proc. Nat. Acad. Sci.. 36 (1950), 663667.Google Scholar
9. Henderson, G. W., The pseudo-arc as an inverse limit with one binding map, Duke Math. J.. 31 (1964), 421425.Google Scholar
10. Hocking, J. G. and Young, G. S., Topology (Addison-Wesley Publishing Co., Reading, Mass., 1961).Google Scholar
11. Janiszewski, S., Ubtr die Begriffe Linie und Flache, Proc. Cambridge International Congress Math.. 2 (1912), 126128.Google Scholar
12. Kelley, J. L., General topology (D. Van Nostrand Co., Inc., Princeton, N. J., 1960).Google Scholar
13. Knill, R. J., Cones, products, and fixed points, Fund. Math.. 60 (1967), 3546.Google Scholar
14. Martin, J. R., Fixed point sets of Peano continua, Pac. J. Math. 74 (1978), 163166.Google Scholar
15. Robbins, H., Some complements to Brouwer s fixed point theorem, Israel J. Math.. 5 (1967), 225226.Google Scholar
16. Schirmer, H., Fixed point sets of homeomorphisms of compact surfaces, Israel J. Math.. 10 (1971), 373378.Google Scholar
17. Schirmer, H., Fixed point sets of homeomorphisms on dendrites, Fund. Math.. 75 (1972), 117122.Google Scholar
18. Schirmer, H., Fixed point sets of polyhedra, Pac. J. Math.. 52 (1974), 221226.Google Scholar
19. Schirmer, H., On fixed point sets of homeomorphisms of the n-ball, Israel J. Math.. 7 (1969), 4650.Google Scholar
20. Schirmer, H., Properties of fixed point sets on dendrites, Pac. J. Math.. 36 (1971), 795810.Google Scholar
21. Store, A. H., Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc. 65 (1949), 427447.Google Scholar
22. Ward, L. E., Jr., Fixed point sets, Pac. J. Math.. 47 (1973), 553565.Google Scholar
23. Whyburn, G. T., Analytic topology, Amer. Math. Soc. Colloq. Publications, vol. 28, Amer. Math. Soc. (Providence, R. I., 1942).Google Scholar
24. Willard, S., General topology (Addison-Wesley Publishing Co., Reading, Mass., 1970).Google Scholar