Published online by Cambridge University Press: 20 November 2018
All spaces considered in this paper will be metric spaces. A subset A of a space X is called a fixed point set of X if there is a map (i.e., continuous function) ƒ: X → X such that ƒ(x) = x if and only if x ∈ A. In [22] L. E. Ward, Jr. defines a space X to have the complete invariance property (CIP) provided that each of the nonempty closed subsets of X is a fixed point set of X. The problem of determining fixed point sets of spaces has been investigated in [14] through [20] and [22]. Some spaces known to have CIP are n-cells[15], dendrites [20], convex subsets of Banach spaces [22], compact manifolds without boundary [16], and a class of polyhedra which includes all compact triangulable manifolds with or without boundary [18].