Published online by Cambridge University Press: 20 November 2018
If G is a finite group which has a faithful complex representation of degree nit is said to be a linear group of degree n. It is convenient to consider only unimodular irreducible representations. For n ≦ 4 these groups have been known for a long time. An account may be found in Blichfeldt's book (1). For n= 5 they were determined by Brauer in (4). In (4), many properties of linear groups of prime degree pwere determined for pa prime greater than or equal to 5.
In a forthcoming series of papers these results will be extended and the linear groups of degree 7 determined. In the first paper, some general results on linear groups of degree p, p≧ 7, will be given. These results will later be applied to the prime p = 7.