Published online by Cambridge University Press: 07 January 2019
We derive a forcing axiom from the conjunction of square and diamond, and present a few applications, primary among them being the existence of super-Souslin trees. It follows that for every uncountable cardinal $\unicode[STIX]{x1D706}$, if $\unicode[STIX]{x1D706}^{++}$ is not a Mahlo cardinal in Gödel’s constructible universe, then $2^{\unicode[STIX]{x1D706}}=\unicode[STIX]{x1D706}^{+}$ entails the existence of a $\unicode[STIX]{x1D706}^{+}$-complete $\unicode[STIX]{x1D706}^{++}$-Souslin tree.
This research was partially supported by the Israel Science Foundation (grant #1630/14).