Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T18:51:25.183Z Has data issue: false hasContentIssue false

Formal Categories

Published online by Cambridge University Press:  20 November 2018

J.-M. Maranda*
Affiliation:
University of Montreal
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A category is made up of its class of objects , of a function M (or ) which assigns to each (A,B) ∊ × the class M(A, B) of all morphisms from A to B, of an operation μ which is a class of maps

A, B, C ∊ , and of a family of maps

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Bénabou, J., Catégories avec multiplication, C. R. Acad. Sci. Paris, 256 (1963), 18871890.Google Scholar
2. Eckmann, B. and Hilton, P. J., Group-like structures in general categories, I, Math. Ann., 145 (1962), 227255; II, Math. Ann., 151 (1963), 150186.Google Scholar
3. Ehresmann, C., Catégories doubles et catégories structurées, C. R. Acad. Sci. Paris, 256 (1963), 11981201.Google Scholar
4. Godement, R., Théorie des faisceaux. Act. Sri. et ind., 1252 (Paris, 1958).Google Scholar
5. Huber, P. J., Homotopy theory in general categories, Math. Ann., 144 (1961), 361385.Google Scholar
6. Kan, D. M., Adjoint functors, Trans. Am. Math. Soc, 87 (1958), 294329.Google Scholar
7. Maranda, J.-M., Some remarks on limits in categories, Can. Math. Bull., 5 (1962), 133146.Google Scholar
8. Maranda, J.-M., Infective structures, Trans. Am. Math. Soc, 110 (1964), 98135.Google Scholar