Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T12:43:54.507Z Has data issue: false hasContentIssue false

Generalized Beilinson Elements and Generalized Soulé Characters

Published online by Cambridge University Press:  06 February 2020

Kenji Sakugawa*
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 6068502, Japan Email: sakugawa@kurims.kyoto-u.ac.jp

Abstract

The generalized Soulé character was introduced by H. Nakamura and Z. Wojtkowiak and is a generalization of Soulé’s cyclotomic character. In this paper, we prove that certain linear sums of generalized Soulé characters essentially coincide with the image of generalized Beilinson elements in K-groups under Soulé’s higher regulator maps. This result generalizes Huber–Wildeshaus’ theorem, which is a cyclotomic field case of our results, to an arbitrary number fields.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A. A. and Deligne, P., Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et regulateurs. In: Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math., 55, Part 2, American Mathematical Society, Providence, RI, 1994, pp. 97121.Google Scholar
Borel, A., Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. (4) 7(1974), 235272.CrossRefGoogle Scholar
Dan-Cohen, I. and Wewers, S., Mixed Tate motives and the unit equation. Int. Math. Res. Not. IMRN 2016(2016), 52915354. https://doi.org/10.1093/imrn/rnv239CrossRefGoogle Scholar
Deligne, P., Le groupe fondamental de la droite projective moins trois points. In: Galois groups over Q (Berkeley, CA, 1987). Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989, pp. 79297. https://doi.org/10.1007/978-1-4613-9649-9_3CrossRefGoogle Scholar
Deligne, P. and Goncharov, A., Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Ecole Norm. Sup. (4) 38(2005), 156. https://doi.org/10.1016/j.ansens.2004.11.001CrossRefGoogle Scholar
de Jeu, R., Zagier’s conjecture and wedge complexes in algebraic K-theory. Compositio Math. 96(1995), 197247.Google Scholar
Douai, J.-C. and Wojtkowiak, Z., Descent for l-adic polylogarithms. Nagoya Math. J. 192(2008), 5988. https://doi.org/10.1017/S0027763000025976CrossRefGoogle Scholar
Furusho, H., P-adic multiple zeta values II: Tannakian interpretations. Amer. J. Math. 129(2007), 11051144. https://doi.org/10.1353/ajm.2007.0024CrossRefGoogle Scholar
Goncharov, A., Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J. 128(2005), no. 2, 209284. https://doi.org/10.1215/S0012-7094-04-12822-2CrossRefGoogle Scholar
Grothendieck, A., Séminaire de géométrie algébrique du Bois Marie 1960/1961 SGA1. Lecture Notes on Math., 224, Springer Verlag, 1971.Google Scholar
Hain, R. and Matsumoto, M., Tannakian fundamental groups associated to Galois groups. In: Galois groups and fundamental groups. Math. Sci. Res. Inst. Publ., 41, Cambridge University Press, Cambridge, 2003, pp. 183216.Google Scholar
Hain, R. and Matsumoto, M., Weighted completion of Galois groups and Galois actions on the fundamental group of P1 -{ 0, 1, }. Compositio Math. 139(2003), no. 2, 119167. https://doi.org/10.1023/B:COMP.0000005077.42732.93CrossRefGoogle Scholar
Huber, A., Mixed motives and their realization in derived categories. Lecture Notes in Mathematics, 1604, Springer-Verlag, Berlin, 1995. https://doi.org/10.1007/BFb0095503CrossRefGoogle Scholar
Huber, A., Realization of Voevodsky’s motives. J. Algebraic Geom. 9(2000), no. 4, 755799.Google Scholar
Huber, A., Corrigendum to: “Realization of Voevodsky’s motives” [J. Algebraic Geom. 9(2000), no. 4, 755–799; MR1775312]. J. Algebraic Geom. 13(2004), no. 1, 195207. https://doi.org/10.1090/S1056-3911-03-00374-6CrossRefGoogle Scholar
Huber, A. and Kings, G., Degeneration of l-adic Eisenstein classes and of the elliptic polylog. Invent. Math. 135(1999), 545594. https://doi.org/10.1007/s002220050295CrossRefGoogle Scholar
Huber, A. and Kings, G., Bloch–Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters. Duke Math. Jour. 119(2003), 393464. https://doi.org/10.1215/S0012-7094-03-11931-6Google Scholar
Huber, A. and Wildeshaus, J., Classical motivic polylogarithm, according to Beilinson and Deligne. Doc. Math. 3(1998), 27133.Google Scholar
Ivorra, F., Réalisation -adique des motifs triangulés géométriques. II. Math. Z. 265(2010), 221247. https://doi.org/10.1007/s00209-009-0511-1CrossRefGoogle Scholar
Nakamura, H. and Wojtkowiak, Z., On explicit formulae for l-adic polylogarithms. In: Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999). Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002, pp. 285294. https://doi.org/10.1090/pspum/070/1935410CrossRefGoogle Scholar
Nakamura, H., Sakugawa, K., and Wojtkowiak, Z., Polylogarithmic analogue of the Coleman–Ihara formula. I. Osaka J. Math. 54(2017), 5574.Google Scholar
Nakamura, H., Sakugawa, K., and Wojtkowiak, Z., Polylogarithmic analogue of the Coleman–Ihara formula. II. RIMS Kôkyûroku Bessatsu, B64, Res. Inst. Math. Sci. (RIMS), Kyoto, 2017, pp. 3354.Google Scholar
Saavedra-Rivano, N., Catégories Tannakiennes. Lecture Notes in Mathematics, 265, Springer-Verlag, Berlin, New York, 1972.CrossRefGoogle Scholar
Sakugawa, K., A non-abelian generalization of Bloch–Kato exponential map. Math. J. Okayama Univ. 59(2017), 4170.Google Scholar
Soulé, C., On higher p-adic regulators. In: Algebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill. 1980). Lecture Notes in Math., 854, Springer, Berlin, New York, 1981, pp. 372401. https://doi.org/10.1007/BFb0089530CrossRefGoogle Scholar
Voevodsky, V., Triangulated categories of motives over a field, in Cycles, transfers, and motivic homology theories. Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188238.Google Scholar
Wojtkowiak, Z., On l-adic iterated integrals I. Analog of Zagier conjecture. Nagoya Math. J. 176(2004), 113158. https://doi.org/10.1017/S0027763000009004CrossRefGoogle Scholar
Wojtkowiak, Z., On l-adic iterated integrals II. Functional equations and l-adic polylogarithms. Nagoya Math. J. 177(2005), 117153. https://doi.org/10.1017/S0027763000009077CrossRefGoogle Scholar
Zagier, D., Polylogarithms, Dedekind zeta functions and the algebraic K theory of fields. In: Arithmetic algebraic geometry (Texel, 1989). Progr. Math., 89, Birkhauser Boston, Boston, MA, 1991, pp. 391430.CrossRefGoogle Scholar