Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:51:20.790Z Has data issue: false hasContentIssue false

Global and non Global Solutions for Some Fractional Heat Equations With Pure Power Nonlinearity

Published online by Cambridge University Press:  20 November 2018

Tarek Saanouni*
Affiliation:
University of Tunis El Manar, Faculty of Science of Tunis, LR03ES04 partial differential equations and applications, 2092 Tunis, Tunisia e-mail: Tarek.saanouni@ipeiem.rnu.tn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The initial value problem for a semi-linear fractional heat equation is investigated. In the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of solutions are discussed via the potential well method.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Abe, S. and Thurner, S., Anomalous diffusion in view ofEinsteins 1905 theory of Brownian motion. Physica A 356 (2005), no. 2-4, 403407.Google Scholar
[2] Adams, D. R., Sobolev spaces. Academic Press, New York, (1975).http://dx.doi.org/10.1090/S0002-9939-2013-12177-5 Google Scholar
[3] Barrios, B., Peral, I., Soria, E., and Valdinoci, E., A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal. 213(2014), no. 2, 629650. http://dx.doi.org/10.1007/s00205-014-0733-1 Google Scholar
[4] Brezis, H. and Casenave, T., A nonlinear heat equation with singular initial data. J. Anal. Math. 68(1996), 277304. http://dx.doi.org/10.1007/BF02790212 Google Scholar
[5] Christ, M. and Weinstein, M.,Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100(1991), 87109. http://dx.doi.Org/10.1016/0022-1236(91 )90103-C Google Scholar
[6] Galaktionov, V. A. and Pohozaev, S. I., Existence and blow-up for higher-order semi-linear parabolic equations: majorizing order-preserving operators. Indiana Univ. Math. J. 51(2002), no. 6, 13211338.http://dx.doi.Org/10.1512/iumj.2OO2.51.2131 Google Scholar
[7] Hajaiej, H., Molinet, L., Ozawa, T., and Wan, B., Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. RIMS Kokyuroku Bessatsu B26, RIMS, Kyota, 2011, pp. 159175.Google Scholar
[8] Haraux, A. and Weissler, F. B., Nonuniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31(1982), 167189. http://dx.doi.org/10.1512/iumj.1982.31.31016 Google Scholar
[9] Ibrahim, S., Majdoub, M., Jrad, R., and Saanouni, T., Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21(2014), no. 3, 535551.Google Scholar
[10] Keel, M. and Tao, T., Endpoint Strichartz estimates. Amer. J. Math. 120(1998), 955980. http://dx.doi.org/10.1353/ajm.1998.0039 Google Scholar
[11] Lieb, E. H. and Loss, M., Analysis. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 1997.Google Scholar
[12] Lions, P. L., Symetrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(1982), 315334.http://dx.doi.Org/10.1016/0022-1236(82)90072-6 Google Scholar
[13] Mellet, A., Mischler, S., and Mouhot, C., Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199(2011), no. 2, 493525.http://dx.doi.Org/10.1007/s00205-010-0354-2 Google Scholar
[14] Palatucci, G. and Pisante, A., Improved Sobolev embedding, profile decomposition and concentration-compactness for fractional Sobolev spaces. Cal. Var. Partial Differential Equations 50(2014), no. 3, 799829.http://dx.doi.org/10.1007/s00526-013-0656-y Google Scholar
[15] Payne, L. E. and Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(1975), no. 3-4, 273303. http://dx.doi.org/10.1007/BF02761595 Google Scholar
[16] Saanouni, T., Remarks on damped fractional Schrödinger equation with pure power nonlinearity. J. Math. Phys. 56(2015), no. 6, 061502, 14.http://dx.doi.Org/10.1063/1.4922114 Google Scholar
[17] Vlahos, L., Isliker, H., Kominis, Y., and Hizonidis, K., Normal and anomalous Diffusion: a tutorial. In: Order and chaos, 10. T. Bountis (ed.), Patras University Press, 2008.Google Scholar
[18] Weissler, F. B., Local existence and nonexistence for a semilinear parabolic equation in Lp. Indiana Univ. Math. J. 29(1980), 79102.http://dx.doi.Org/10.1512/iumj.1 980.29.29007 Google Scholar
[19] Weissler, F. B., Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38(1981), 2940.http://dx.doi.org/10.1007/BF02761845 Google Scholar
[20] Weitzner, H. and Zaslavsky, G. M., Some applications of fractional equations. Chaotic transport and complexity in classical and quantum dynamics. Commun. Nonlinear Sci. Numer. Simul. 8(2003), no. 3-4 273281.http://dx.doi.org/10.1016/S1007-5704(03)00049-2 Google Scholar
[21] Wu, G. and Yuan, J., Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. J. Math. Anal. Appl. 340(2008) 13261335.http://dx.doi.Org/10.1016/j.jmaa.2007.09.060 Google Scholar
[22] Zhai, Z., Strichartz type estimates for fractional heat equations. J. Math. Anal. Appl. 356(2009), 642658.http://dx.doi.Org/10.1016/j.jmaa.2009.03.051 Google Scholar