Article contents
Hewitt Realcompactifications of Products
Published online by Cambridge University Press: 20 November 2018
Extract
The Hewitt realcompactification vX of a completely regular Hausdorff space X has been widely investigated since its introduction by Hewitt [17]. An important open question in the theory concerns when the equality v(X × Y) = vX × vY is valid. Glicksberg [10] settled the analogous question in the parallel theory of Stone-Čech compactifications: for infinite spaces X and Y, β(X × Y) = βX × β Y if and only if the product X × Y is pseudocompact. Work of others, notably Comfort [3; 4] and Hager [13], makes it seem likely that Glicksberg's theorem has no equally specific analogue for v(X × Y) = vX × vY. In the absence of such a general result, particular instances may tend to be attacked by ad hoc techniques resulting in much duplication of effort.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1970
References
- 14
- Cited by