Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T21:03:22.078Z Has data issue: false hasContentIssue false

Hopf Algebras of Combinatorial Structures

Published online by Cambridge University Press:  20 November 2018

William R. Schmitt*
Affiliation:
Department of Mathematical Sciences, Memphis State University, Memphis, Tennessee 38152, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A generalization of the definition of combinatorial species is given by considering functors whose domains are categories of finite sets, with various classes of relations as moronisms. Two cases in particular correspond to species for which one has notions of restriction and quotient of structures. Coalgebras and/or Hopf algebras can be associated to such species, the duals of which provide an algebraic framework for studying invariants of structures.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

1. Abe, E., Hopf Algebras, Cambridge University Press, Cambridge, 1980.Google Scholar
2. Décoste, H., LaBelle, G. and Leroux, P., Une Approche Combinatoire Pour L'itération de Newton-Raphson, Advances in Applied Mathematics 3(1982), 407416.Google Scholar
3. Haiman, M. and Schmitt, W., Antipodes, Incidence Coalgebras and Lagrange Inversion in One and Several Variables, Journal of Combinatorial Theory (A) 50(1989), 172185.Google Scholar
4. Joni, S. and Rota, G.-C., Coalgebras and Bialgebras in Combinatorics, Studies in Applied Mathematics 61(1979), 93139.Google Scholar
5. Joyal, A., Une Théorie Combinatoire des Séries Formelles, Advances in Mathematics 42(1981), 182.Google Scholar
6. Labelle, G., Une Nouvelle Démonstration Combinatoire des Formules d'Inversion de Lagrange, Advances in Mathematics 42(1981), 217247.Google Scholar
7. Labelle, G., Éclosions Combinatoires Appliquées à l'Inversion Multidimensionelle des Séries Formelles, Journal of Combinatorial Theory (A) 39(1985), 5282.Google Scholar
8. Labelle, G., Une Combinatoire Sous-Jacente au Théorème des Fonctions Implicites, Journal of Combinatorial Theory (A) 40(1985), 377393.Google Scholar
9. Labelle, G., On Combinatorial Differential Equations, Journal of Mathematical Analysis and Applications 113(1986), 344381.Google Scholar
10. Labelle, J., Applications Diverses de la Théorie Combinatoire des Espèces de Structures, Ann. Sci. Math. Québec 7(1983), 5894.Google Scholar
11. Rota, G.C., On the Foundations of Combinatorial Theory I, Theory ofMobius Functions, Z. Wahrscheinlichkeitstheorie 2(1964), 340368.Google Scholar
12. Schmitt, W., Antipodes and Incidence Coalgebras, Journal of Combinatorial Theory (A) 46(1987), 264290.Google Scholar
13. Sweedler, M., Hopf Algebras, Benjamin, New York, 1969.Google Scholar