Published online by Cambridge University Press: 20 November 2018
On a compact connected group $G$, consider the infinitesimal generator $-L$ of a central symmetric Gaussian convolution semigroup ${{\left( {{\mu }_{t}} \right)}_{t>0}}$. Using appropriate notions of distribution and smooth function spaces, we prove that $L$ is hypoelliptic if and only if ${{\left( {{\mu }_{t}} \right)}_{t>0}}$ is absolutely continuous with respect to Haar measure and admits a continuous density $x\mapsto {{\mu }_{t}}\left( x \right),t>0$, such that ${{\lim }_{t\to 0}}t\log {{\mu }_{t}}\left( e \right)=0$. In particular, this condition holds if and only if any Borel measure $u$ which is solution of $Lu=0$ in an open set $\Omega $ can be represented by a continuous function in $\Omega $. Examples are discussed.