Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T12:58:46.411Z Has data issue: false hasContentIssue false

Interior h1 Estimates for Parabolic Equations with LMO Coefficients

Published online by Cambridge University Press:  20 November 2018

Lin Tang*
Affiliation:
LMAM, School of Mathematics and Sciences, Peking University,, Beijing, 100871, P. R. China, e-mail: tanglin@math.pku.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we establish a priori${{h}^{1}}$-estimates in a bounded domain for parabolic equations with vanishing $\text{LMO}$ coefficients.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] M., Bramanti and M. C., Cerutti, W1, 2 p solvability for the cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm. Partial Differentail Equations 18(1993), no. 9-10, 1735-1763. doi:10.1080/03605309308820991Google Scholar
[2] A. P., Calderón, An atomic decomposition of distributions in parabolic Hp spaces. Adv. in Math. 25(1977), no. 3, 216-225. doi:10.1016/0001-8708(77)90074-3Google Scholar
[3] A. P., Calderón and A., Torchinsky, Parabolic maximal functions associated with a distribution. Adv. in Math. 16(1975), 1-64. doi:10.1016/0001-8708(75)90099-7Google Scholar
[4] A. P., Calderón and A., Torchinsky, Parabolic maximal functions associated with a distribution. II. Adv. in Math. 24(1977), no. 2, 101-171. doi:10.1016/S0001-8708(77)80016-9Google Scholar
[5] D. C., Chang and S. Y., Li, On the boundedness of multipliers, commutators and the second derivatives of Green's operators on H1 and BMO. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28(1999), no. 2, 341-356.Google Scholar
[6] E. R., Fabes and Rivière, N., Singular integrals with mixed homogeneity. Studi ka Math. 27(1966), 19-38.Google Scholar
[7] C. L., Fefferman and E. M., Stein, Hp-space of several variables. Acta Math. 46(1972), no. 3-4, 137-193. doi:10.1007/BF02392215Google Scholar
[8] D., Goldberg, A local version of real Hardy spaces. Duke Math. J. 46(1979), no. 1, 27-42. doi:10.1215/S0012-7094-79-04603-9Google Scholar
[9] P. W., Jones, Extension theorems for BMO. Indiana Univ. Math. J. 29(1980), 41-66. doi:10.1512/iumj.1980.29.29005Google Scholar
[10] O. A., Ladyžhenskaya, V. A., Solonnikov, and N Ural'tseva, N., Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23. American Mathematical Society, Providence, RI, 1968.Google Scholar
[11] G. M., Liberman, Second Order Parabolic Differential Equations. World Scientific, Singapore, 1966.Google Scholar
[12] D., Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207(1975), 391-405. doi:10.2307/1997184Google Scholar
[13] L., Softova, Parabolic equations with VMO coefficients in Morrey spaces. J. Differential Equatiopns 51(2001), 1-25. (electronic)Google Scholar
[14] Y., Sun and W., Su, Interior h1-estimates for second order elliptic equations with vanishing LMO coefficientes. J. Funct. Anal. 234(2006), no. 2, 235-260. doi:10.1016/j.jfa.2005.10.004.Google Scholar