Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T03:26:20.935Z Has data issue: false hasContentIssue false

Isospectrality for Orbifold Lens Spaces

Published online by Cambridge University Press:  27 August 2019

Naveed S. Bari
Affiliation:
47 Lloyd Wright Avenue, Manchester M11 3NJ, United Kingdom Email: bari.naveed@yahoo.com
Eugenie Hunsicker
Affiliation:
Department of Mathematics, Loughborough University, Loughborough, LE11 3TU, United Kingdom Email: E.Hunsicker@lboro.ac.uk

Abstract

We answer Mark Kac’s famous question, “Can one hear the shape of a drum?” in the positive for orbifolds that are 3-dimensional and 4-dimensional lens spaces; we thus complete the answer to this question for orbifold lens spaces in all dimensions. We also show that the coefficients of the asymptotic expansion of the trace of the heat kernel are not sufficient to determine the above results.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adem, A., Leida, J., and Ruan, Y., Orbifolds and string topology (Cambridge Tracts in Mathematics, 171), Cambridge University Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511543081Google Scholar
Bari, N., Orbifold lens spaces that are isospectral but not isometric. Osaka J. Math 48(2011), 140.Google Scholar
Bari, N. S., Stanhope, E., and Webb, D., One cannot hear orbifold isotropy type. Arch. Math. (Basel) 87(2006), no. 4, 375384. https://doi.org/10.1007/s00013-006-1748-0Google Scholar
Bérard, P. and Webb, D., On ne peut pas entendre lórientabilité dúne surface. C. R. Acad. Sci. Paris Sér. I Math. 320(1995), no. 5, 533536.Google Scholar
Berger, M., Gaudachon, P., and Mazet, E., Le spectre d’une variété riemannienne (Lecture Notes in Mathematics, 194), Springer-Verlag, Berlin-Heidelberg-New York, 1971.Google Scholar
Buser, P., Conway, J., Doyle, P., and Semmler, K., Some planar isospectral domains. Internat. Math. Res. Notices. 9(1994), 391ff, approx. 9 pp. (electronic). https://doi.org/10.1155/S1073792894000437Google Scholar
Chiang, Y.-J., Spectral geometry of V-manifolds and its application to harmonic maps. In: Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990). Proc. Symp. Pure Math., 54, part 1, American Mathematical Society, Providence, RI, 1993, pp. 9399.https://doi.org/10.1090/pspum/054.1/1216577Google Scholar
Craioveanu, M., Puta, M., and Rassias, T., Old and new aspects in spectral geometry (Mathematics and its Applications, 534), Kluwer Academic Publishers, Dordrecht, 2001. https://doi.org/10.1007/978-94-017-2475-3Google Scholar
Dixon, L., Harvey, J. A., Vafa, C., and Witten, E., Strings on orbifolds. Nuclear Phys. B 261(1985), 678686. https://doi.org/10.1016/0550-3213(85)90593-0Google Scholar
Donnelly, H., Spectrum and the fixed point sets of isometries I. Math. Ann. 224(1976), 161170. https://doi.org/10.1007/BF01436198Google Scholar
Doyle, P. and Rossetti, J., Isospectral hyperbolic surfaces having matching geodesics. arxiv:math.DG/0605765Google Scholar
Dryden, E., Gordon, C., Greenwald, S., and Webb, D., Asymptotic expansion of the heat kernel for orbifolds. Michigan Math J. 56(2008), 205238. https://doi.org/10.1307/mmj/1213972406Google Scholar
Du Val, P., Homographies, quaternions and rotations (Oxford Mathematical Monographs), Clarendon Press, Oxford, 1964.Google Scholar
Gilkey, P. B., On spherical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant. Compos. Math. 56(1985), 171200.Google Scholar
Gilkey, P. B., Invariance theory, the heat equation, and the Atiyah-Singer index theorem (Mathematics Lecture Series, 11), Publish or Perish, Wilmington, DE, 1984.Google Scholar
Gordon, C. S., Handbook of differential geometry, Vol. I. North-Holland, Amsterdam, 2000, pp. 747778.https://doi.org/10.1016/S1874-5741(00)80009-6Google Scholar
Gordon, C. S. and Rossetti, J., Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn’t reveal. Ann. Inst. Fourier (Grenoble) 53(2003), no. 7, 22972314.Google Scholar
Gornet, R. and McGowan, J., Lens spaces, isospectral on forms but not on functions. LMS J. Comput. Math. 9(2006), 270286. https://doi.org/10.1112/S1461157000001273Google Scholar
Grosek, O. and Porubsky, S., Coprime solutions to axb (mod n). J. Math. Cryptol. 7(2013), 217224. https://doi.org/10.1515/jmc-2013-5003Google Scholar
Ikeda, A., On lens spaces which are isospectral but not isometric. Ann. Sci. Éc. Norm. Sup. (4) 13(1980), 303315.Google Scholar
Ikeda, A., On the spectrum of a Riemannian manifold of positive constant curvature. Osaka J. Math. 17(1980), 7593.Google Scholar
Ikeda, A. and Yamamoto, Y., On the spectra of a 3-dimensional lens space. Osaka J. Math. 16(1979), 447469.Google Scholar
Iliev, B. Z., Handbook of normal frames and coordinates (Progress in Mathematical Physics, 42), Birkhäuser Verlag, Basel, 2006, pp. 5155.Google Scholar
Kac, M., Can one hear the shape of a drum? Amer. Math. Monthly 73(1966), no. 4, Part II, 123. https://doi.org/10.2307/2313748Google Scholar
Lauret, E. A., Spectra of orbifolds with cyclic fundamental groups. Ann. Global Anal. Geom. 50(2016), 128. https://doi.org/10.1007/s10455-016-9498-0Google Scholar
Minakshisundaram, S. and Pleijel, A., Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canad. J. Math. 1(1949), 242256. https://doi.org/10.4153/cjm-1949-021-5Google Scholar
Milnor, J., Eigenvalues of the Laplace operator on certain manifolds. Proc. Natl. Acad. Sci. USA 51(1964), 542. https://doi.org/10.1073/pnas.51.4.542Google Scholar
Proctor, E. and Stanhope, E., An isospectral deformation on an orbifold quotient of a nilmanifold. arxiv:math.0811.0794Google Scholar
Rossetti, J., Schueth, D., and Weilandt, M., Isospectral orbifolds with different maximal isotropy orders. Ann. Global Anal. Geom. 34(2008), 351366. https://doi.org/10.1007/s10455-008-9110-3Google Scholar
Stanhope, E., Hearing orbifold topology. Ph.D. Thesis, Dartmouth College, 2002.Google Scholar
Stanhope, E., Spectral bounds on orbifold isotropy. Annals Global Anal. Geom. 27(2005), no. 4, 355375. https://doi.org/10.1007/s10455-005-1584-7Google Scholar
Vignéras, M. F., Variétés Riemanniennes isospectrales et non isometriques. Ann. of Math. 112(1980), 2132. https://doi.org/10.2307/1971319Google Scholar
Yamamoto, Y., On the number of lattice points in the square |x| + |y|⩽u with a certain congruence condition. Osaka J. Math. 17(1980), 921.Google Scholar